Lucy and Selam's species climbed trees

Oct 25, 2012

Australopithecus afarensis (the species of the well-known "Lucy" skeleton) was an upright walking species, but the question of whether it also spent much of its time in trees has been the subject of much debate, partly because a complete set of A. afarensis shoulder blades has never before been available for study.

For the first time, Midwestern University Professor David Green and Curator of Anthropology at the California Academy of Sciences, Zeresenay Alemseged, have thoroughly examined the two complete shoulder blades of the "Selam," an exceptionally well-preserved skeleton of an A. afarensis child from Dikika, Ethiopia, discovered in 2000 by Dr. Alemseged. Further preparation and extensive analyses of these rare bones showed them to be quite apelike, suggesting that this species was adapted to climbing trees in addition to walking bipedally when on the ground. "The question as to whether Australopithecus afarensis was strictly bipedal or if they also climbed trees has been intensely debated for more than thirty years," said Dr. Green. "These remarkable fossils provide strong evidence that these individuals were still climbing at this stage in ." The new findings are published in the October 26 issue of the journal Science.

Dr. Alemseged, assisted by Kenyan lab technician Christopher Kiarie, spent 11 years carefully extracting the two shoulder blades from the rest of the skeleton, which was encased in a sandstone block. "Because shoulder blades are paper-thin, they rarely fossilize—and when they do, they are almost always fragmentary," said Dr. Alemseged. "So finding both shoulder blades completely intact and attached to a skeleton of a known and pivotal species was like hitting the jackpot. This study moves us a step closer toward answering the question 'When did our ancestors abandon climbing behavior?' It appears that this happened much later than many researchers have previously suggested."

Selam was a three-year-old A. afarensis girl who lived about 3.3 million years ago, and she represents the most complete skeleton of her kind to date. After freeing the shoulder blades from the surrounding rock, Green and Alemseged digitized them using a Microscribe, and then took detailed measurements to characterize their shape and function, comparing them to the rare shoulder fossils of other early human relatives: Homo ergaster ("Turkana Boy"), Homo floresiensis ("The Hobbit"), A. africanus, and two adult specimens of A. afarensis. They also made comparisons with an extensive modern sample of juvenile and adult chimpanzee, gorilla, orangutan, and human specimens.

The analysis of the shape and function of the bones revealed that A. afarensis shoulder blades are apelike, indicating a partially arboreal lifestyle. Drs. Green and Alemseged also found that, like living apes, the shoulder anatomy of juvenile and adult representatives of A. afarensis were quite similar. "Human scapulae change shape throughout ontogeny in a significantly different manner than closely related apes," said Dr. Green. "When we compared Selam's scapula with adult members of Australopithecus afarensis, it was clear that the pattern of growth was more consistent with that of apes than humans." At the same time, most researchers agree that many traits of the A. afarensis hip bone, lower limb, and foot are unequivocally humanlike and adapted for upright walking. "This new find confirms the pivotal place that Lucy and Selam's species occupies in human evolution," said Dr. Alemseged. "While bipedal like humans, A. afarensis was still a capable climber. Though not fully human, A. afarensis was clearly on its way."

Explore further: Archaeologists, tribe clash over Native remains

add to favorites email to friend print save as pdf

Related Stories

Vest to prevent balance disorder patients falling

Apr 06, 2010

(PhysOrg.com) -- A vest being developed by scientists at the University of California, Los Angeles (UCLA) could help people with balance disorders to regain their balance. This could cut short the rehabilitation ...

Genomic analysis solves the turtle mystery

Jun 28, 2013

The turtle has always been considered somewhat odd in evolutionary terms. In addition to lacking the hole in the skull—the temporal fenestra—that is characteristic of the egg-laying amniotes, the structure ...

Recommended for you

Bloody souvenir not from decapitated French king: DNA

1 hour ago

Two centuries after the French people beheaded King Louis XVI and dipped their handkerchiefs in his blood, DNA analysis has thrown new doubt on the authenticity of one such rag kept as a morbid souvenir.

Archaeologists, tribe clash over Native remains

21 hours ago

Archaeologists and Native Americans are clashing over Indian remains and artifacts that were excavated during a construction project in the San Francisco Bay Area, but then reburied at an undisclosed location.

User comments : 0

More news stories

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

New breast cancer imaging method promising

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...