Laser spotlight reveals machine 'climbing' DNA

Oct 26, 2012

(Phys.org)—New imaging technology has revealed how the molecular machines that remodel genetic material inside cells 'grab onto' DNA like a rock climber looking for a handhold.

The experiments, reported in this week's Science, use to generate very bright patches close to single cells. When coupled with fluorescent tags this 'spotlight' makes it possible to image the inner workings of cells fast enough to see how the inside change size, shape, and composition in the presence of DNA.

The Oxford team built their own technology for the study, which is a collaboration between the research groups of Mark Leake in Oxford University's Department of Physics and David Sherratt in Oxford University's Department of Biochemistry.

The molecular machines in question are called Structural Maintenance of Chromosome (SMC) complexes: they remodel the inside every living cell and work along similar principles to a large family of molecules that act as very small motors performing functions as diverse as trafficking vital material inside cells to allowing muscles to contract.

The researchers studied a particular SMC, MukBEF (which is made from several different ), inside the bacterium E.coli. David Sheratt and his team found a way to fuse 'fluorescent proteins' directly to the DNA coding for MukBEF, effectively creating a single dye tag for each component of these machines.

Up until now conventional techniques of biological physics or biochemistry have not been sufficiently fast or precise to monitor such tiny machines inside living cells at the level of single molecules.

'Each machine functions in much the same way as rock-climber clinging to a cliff face,' says Mark Leake of Oxford University's Department of Physics, 'it has one end anchored to a portion of while the other end opens and closes randomly by using chemical energy stored in a ubiquitous bio-molecule called adenosine triphosphate, or 'ATP': the universal molecular fuel for all living cells.

'This opening and closing action of the machine is essentially a process of mechanical 'grabbing', in which it attempts to seize more free DNA, like the rock-climber searching for a new handhold.'

It is hoped that pioneering biophysics experiments such as this will give fresh insights into the complex processes which are vital to life, and pave the way for a whole new approach to biomedical research at the very tiny length scale for understanding the causes of many diseases in humans, and how to devise new strategies to combat them.

Explore further: Color-coading gene sequences in human cells

More information: Science 26 October 2012: Vol. 338 no. 6106 pp. 528-531 DOI: 10.1126/science.1227126

Related Stories

DNA cages 'can survive inside living cells'

Jul 04, 2011

(PhysOrg.com) -- Scientists at Oxford University have shown for the first time that molecular cages made from DNA can enter and survive inside living cells.

Proteins shine a brighter light on cellular processes

Mar 20, 2012

Scientists have designed a molecule which, in living cells, emits turquoise light three times brighter than possible until recently. This improves the sensitivity of cellular imaging, a technique where biological ...

Scientists capture single cancer molecules at work

Dec 08, 2011

Researchers have revealed how a molecule called telomerase contributes to the control of the integrity of our genetic code, and when it is involved in the deregulation of the code, its important role in the development of ...

Recommended for you

Color-coading gene sequences in human cells

9 hours ago

(Phys.org)—Is there a way to peer inside the nucleus of a living cell and see how the genes interact? After the completion of the Human Genome Project in 2001, researchers have focused on epigenetic factors, ...

The origins of polarized nervous systems

Mar 03, 2015

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

Mar 03, 2015

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.