New insights into membrane-assisted self-assembly

Oct 24, 2012
This shows the self-assembly process. Credit: Physical Review Letters/Richard James Matthews

How proteins and virus capsids - complex protein structures that encase the genetic material of viruses - form structures near to a fluctuating membrane is simulated by physicist Richard Matthews with advanced computational techniques. Matthews performs research as a Lise-Meitner-Fellow in the Computational Physics Group of the University of Vienna under the direction of Christos Likos, professor for Multiscale Computational Physics. The results are relevant to the understanding of biophysical processes and appear in the current issue of Physical Review Letters.

"In our current paper we present new computational results that explore how membranes may influence crucial biological processes", explains Richard Matthews, Lise-Meitner-Fellow at the University of Vienna and first author of the study. The focus of the investigation is the self-assembly of , the formation of structures or patterns without . More specifically, the effect of the interactions between membranes and proteins, which can influence the formation of ordered structures in cells, is considered.

Self-assembly has become a hot topic in recent years. Many of the most astonishing examples are found in nature, from tiny motors (e.g. the flagellum motor) to virus capsids with perfect spherical forms. Many researchers have also tried to improve our understanding by representing the assembly of such structures with models. In order to gain clear insight it is preferable that these models are as simple as possible. This approach has been very successful in reproducing key features of experiments, whilst also uncovering new aspects. In reality, these processes do not occur in isolation and, in fact, many happen on, or in the vicinity of, membranes, a fact that has been previously neglected in the construction of simple models.

Advanced Simulation Techniques

The research aims to find out the general properties of these fascinating systems by applying state of the art simulation techniques. This requires everything to be calculated on a computer. Due to the complexity of the task, high performance computers are necessary. "In our work we have applied advanced simulation techniques, which allowed us to see how interactions with a membrane influence self-assembly", explains Richard Matthews. "We determined that membranes promote self-assembly and also find that our model reproduces structures that are very similar to those seen in nature."

Explore further: From tobacco to cyberwood

More information: Physical Review Letters. October 2012. DOI: 10.1103/PhysRevLett.109.178302

Related Stories

Gauging the forces between cells

Jul 19, 2012

Cell-cell junctions are important for communication, transport, signalling, waste evacuation and water homeostasis. An European project has investigated how biophysical forces can influence the fulfilment ...

Model unfolds proteins gently

Oct 05, 2010

Protein molecules inside cells are constantly reorganizing themselves, driven by very tiny forces exerted by all the other molecules in their crowded environment. Most experimental techniques and theoretical/computational ...

Recommended for you

Natural nanocrystals shown to strengthen concrete

2 hours ago

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

From tobacco to cyberwood

Mar 30, 2015

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

'Atomic chicken-wire' is key to faster DNA sequencing

Mar 30, 2015

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.