Import of proteins into chloroplasts is differentially regulated by age

Oct 30, 2012

New research has found that the transport of proteins into chloroplasts in plants is differentially regulated by the age of the chloroplast; upturning the previously accepted notion that this process is age-independent or only globally up- or down- regulated for all proteins. The research, led by Dr. Hsou-min Li, a Research Fellow from the Institute of Molecular Biology, Academia Sinica of Taiwan, is published October 30 in the open access journal PLOS Biology.

It's long been known that gene expression changes with age, for example, some genes are expressed in young organisms, others in aged organisms. However, up until now, it has been generally believed that the protein-transport processes that take place inside a cell occur independently of the cell's age.

Dr. Li and colleagues investigated pea leaves of different ages and discovered that proteins imported into chloroplasts—the organelles in plant cells where occurs—can be divided into three groups: one group prefers to be imported into very young chloroplasts, the second group has no special preference, and the third group prefer to be imported into older chloroplasts.

"Age-dependent regulation at the protein transport level had not been thoroughly investigated due to technical difficulties," Dr Li explained. "Pea seedlings offer an excellent model for such studies because each plant has leaves of different ages on a single stem and they are cheap to grow. Other scientists have taken advantage of this but at that time, they only had a very limited number of proteins to test. Now with data from genomic and proteomic analyses, we can test a lot more proteins and can show not only that the regulation exists, but also that every protein can be regulated differently."

After finding this novel regulation, Dr Li's group then attempted to find the signal that controls age selectivity. They found that, for each protein, the age-selective signal is located within the signal peptide that controls organelle import. They also identified a signal-peptide motif that is necessary for targeting proteins to older chloroplasts.

"We knew that signal peptides specify the organelle a protein is supposed to be targeted to, acting like address labels," said Dr Li. "When we found that they also contain the information for the age selectivity we observed, we decided to try to identify the "code" that instructs a protein to go to older first. The existence of such a code means that chloroplast signal peptides are not just address labels - they also contain information about "when" a protein should be delivered."

These findings may have implications for selectively targeting proteins into organelles of aging tissues, said Dr Li. "We believe similar kinds of regulation mechanisms may also exist for other organelles in other organisms, like humans. For example, there may be signal peptide motifs that will allow us to specifically target therapeutic proteins into mitochondria in aging cardiac tissues."

Explore further: Scientists create mouse model to accelerate research on Ebola vaccines, treatments

More information: PLoS Biol 10(10): e1001416. doi:10.1371/journal.pbio.1001416

Related Stories

Amoeba offers key clue to photosynthetic evolution

Feb 27, 2012

(PhysOrg.com) -- The major difference between plant and animal cells is the photosynthetic process, which converts light energy into chemical energy. When light isn't available, energy is generated by breaking ...

Green plant transport mystery solved

Jan 26, 2010

Contrary to prevailing wisdom, a new study from plant biologists at UC Davis shows that proteins of the Hsp70 family do indeed chaperone proteins across the membranes of chloroplasts, just as they do for other cellular structures.

Putting light-harvesters on the spot

Oct 19, 2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schunemann has de ...

What makes a plant a plant?

Jun 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.