HRL's breakthrough development of ultralight microlattice materials recognized

Oct 05, 2012

Researchers from HRL Laboratories are among the honorees of Popular Mechanics' 2012 Breakthrough Awards for their development of ultralight microlattice materials.

Drs. William Carter, Alan Jacobsen and Tobias Schaedler were recognized during a ceremony October 4 at the Hearst Tower in New York City. Breakthrough Awards are presented annually by the magazine to "innovators whose work will transform the world in years to come."

The researchers' innovative "microlattice" architected material and the novel fabrication process developed at HRL to produce it were first announced in 2007. Demonstration of ultralight metallic microlattices was published in the November 17, 2011, issue of Science.

The iconic image of a super light metallic microlattice material atop a tuft of dandelion shows the dramatic possibilities offered by the microlattice fabrication process developed at HRL. With a density of only 0.9 mg/cc, the material developed in 2011 was at the time the lightest ever, approximately one hundred times lighter than Styrofoam. Its unique "microlattice" cellular architecture consisted of a lattice of interconnected nickel tubes with a wall thickness of 100 nanometers, 1,000 times thinner than a human hair.

Since their 2011 announcement, the HRL researchers have been investigating the numerous potential uses for ultralight microlattice materials. By modifying the cellular architecture—for example, the wall thickness, tube diameter or cell size—a wide range of densities and properties can be achieved. Exceptionally high strength and stiffness per weight can be reached, and the unique enables unprecedented mechanical behavior for a metal, including complete recovery from compression exceeding 50% strain and extraordinarily high .

The material, initially developed for the , could be used for lightweight structures, battery electrodes, catalyst supports, and acoustic, vibration or shock energy damping.

The HRL researchers attended the Breakthrough conference, during which Dr. Carter participated on a 45-minute panel on "The Innovation Economy." The Breakthrough Awards were presented that evening during a reception and dinner.

Explore further: Smartgels are thicker than water

add to favorites email to friend print save as pdf

Related Stories

World's lightest material developed

Nov 17, 2011

A team of researchers from UC Irvine, HRL Laboratories and the California Institute of Technology have developed the world's lightest material – with a density of 0.9 mg / cc – about 100 times lighter ...

Microstructural improvements enhance material properties

Sep 14, 2012

Exquisite buildings like the Eiffel Tower were made possible because of advances in structural engineering design methods. Truss structures, like the Eiffel Tower, are highly efficient; they can carry the ...

Recommended for you

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0