High-pressure science gets super-sized

Oct 24, 2012

(Phys.org)—The study of materials at extreme conditions took a giant leap forward with the discovery of a way to generate super high pressures without using shock waves whose accompanying heat turns solids to liquid.

This discovery will allow scientists for the first time to reach static pressure levels exceeding 4 million atmospheres, a high-pressure environment where new unique compounds could be formed, materials change their chemical and physical properties, and metals become insulators. An international team of scientists using a new high-pressure anvil design and technique in conjunction with high-energy X-rays was able to create 640 gigapascals, or GPas, of pressure. This is 50 percent more pressure than previously demonstrated and 150 percent more pressure than accessible by typical high-pressure experiments.

Pressures at this level have vast ramifications for earth science, cosmology, chemistry, shock physics and material science. Static pressure of 640 GPa is 6 million times the pressure of the air at the Earth's surface and more than 1 1Ž2 times the pressure at the center of the Earth. Research at these pressures could lead to new revelations about how the Earth evolved and how iron, the most inside the Earth's core, functions at extremes.

This new super high-pressure capability was developed by scientists from the University of Bayreuth in Germany, the University of Chicago and the University of Antwerp in Belgium The physical properties of tiny materials (less than 1 micron thick) were investigated in situ at ultra-high pressures with high-resolution micro X-ray diffraction techniques at the GeoSoilEnviro Consortium for Advanced Radiation Sources, or GSECARS, a beamline operated by the University of Chicago at the U.S. Department of Energy's Advanced Photon Source at Argonne National Laboratory. Details appear today in the article "Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar" in the journal Nature Communications.

"The ability to do static experiments at this pressure range has only been theorized about," said Vitali Prakapenka, an author on the paper and scientist at the Center for Advanced Radiation Sources at the University of Chicago. "We aren't stopping here. We expect to increase the accessible pressure range close to one terapascal, or 10 megabars, to probe materials at conditions corresponding to the core of gas giant planets, such as Uranus and Neptune, which have pressures of about 7 megabars."

Previous studies have been limited because the only way to reach such high pressures was to use dynamic compression (shockwaves), which also generate high temperatures and only nanoseconds of observation time. The discovery of a way to apply static pressures allows experimental studies of physical and chemical properties of materials in situ at high pressures with a number of various techniques to test long-held theories, including metallization of hydrogen.

"This new technique could revolutionize the study of high-pressure science," said Leonid Dubrovinsky, one of the paper's authors and a scientist at the University of Bayreuth.

Since the late 1950s scientists have been using diamond anvil cells to generate extreme pressures to test the durability of materials, to create new properties of materials, such as superconductivity, and to replicate high-pressure conditions of planetary interiors. Yet, until now, scientists have struggled to reach pressures of the Earth's inner core, which is 320 to 360 GPa. Only a handful of experiments have been reported at these pressures, and the maximum achieved pressure had been about 420 GPa

Scientists were able to triple the normal experiment pressure level by adding a second set of micro-anvils (10-20 microns in diameter) between two gem-quality single-crystal diamond anvils of about one-quarter of a carat each. This secondary anvil is made of superhard nanocrystalline diamond semi-balls fabricated from glassy carbon using newly developed technique in a large volume press at high pressure and temperature.

"The nanocrystalline diamond balls have very high yield strength and are less compressible and less brittle than single-crystal diamonds," said Natalia Dubrovinskaia, one of the paper's authors and a scientist at the University of Bayreuth. "That allows us to drastically extend the achievable range using micro-balls as second stage anvils."

The GSECARS is available for use through the general user proposal process at the APS.

Explore further: Scaling up armor systems

Related Stories

Under pressure: Ramp-compression smashes record

Nov 11, 2011

In the first university-based planetary science experiment at the National Ignition Facility (NIF), researchers have gradually compressed a diamond sample to a record pressure of 50 megabars (50 million times ...

New form of superhard carbon observed

Oct 11, 2011

An amorphous diamond – one that lacks the crystalline structure of diamond, but is every bit as hard – has been created by a Stanford-led team of researchers.

Probing hydrogen under extreme conditions

Apr 13, 2012

(Phys.org) -- How hydrogen--the most abundant element in the cosmos--responds to extremes of pressure and temperature is one of the major challenges in modern physical science. Moreover, knowledge gleaned ...

Micro-explosion reveals new super-dense aluminium

Aug 24, 2011

(PhysOrg.com) -- Although materials scientists have theorized for years that a form of super-dense aluminum exists under the extreme pressures found inside a planet’s core, no one had ever actually seen ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Oct 24, 2012
very exciting
1 / 5 (4) Oct 25, 2012
OK, good,.. now get Roseanne Barr to sit on top of the whole thing.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.