Hi-fi single photons

Oct 04, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, École Normale Supérieure and CNRS) in Paris, France, Virginia d'Auria and her colleagues identified the extent to which photon detector characteristics shape the preparation of a photon source designed to reliably generate single photons. In a paper about to be published in European Physical Journal D, the French team determined the value of key source parameters that are necessary to generate high-fidelity single photons.

The problem with photon detectors is that they can be noisy or have a limited ability to detect single photons. Some cannot identify the number of photons; they can only detect their presence. Given the influence of these factors, improving the fidelity of single-photon generation is very challenging. But it is also crucial for their subsequent use in quantum information protocols, including and computing.

Single photons are typically generated using two laser beams that are correlated at the . This means that the detection of a single photon in the first beam heralds the generation of a single photon in the second one.

The authors first reviewed how to describe a detector from a mathematical point of view. They then simulated which photons would be obtained from different initial sources. This led the team to outline the conditions under which the heralding detector can deliver good resolution of the number of photons, as a means of improving the reliability in obtaining single photons. They corroborated their findings using two experimental detectors.

Explore further: Bake your own droplet lens

More information: V. D'Auria, O. Morin, C. Fabre, J. Laurat (2012), Effect of the heralding detector properties on the conditional generation of single-photon states, European Physical Journal D, DOI 10.1140/epjd/e2012-30351-6

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Bake your own droplet lens

6 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

Precise control of optical frequency on a chip

Apr 23, 2014

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity ...

User comments : 0

More news stories

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...