Gold nanocluster arrays will improve SERS sensors, researchers say

Oct 10, 2012
Schematic of the nanocluster SERS substrate in planar chip and fiber-optic configurations. The dome shape of the gold nanoclusters reflects the shape of the hemispherical polymer nanostructures on the underlying surface. The red/green clusters represent the molecules being analyzed. The arrays are densely packed and regularly spaced (inset: electron micrograph of the arrays). Credit: 2012 American Chemical Society (inset); 2012 A*STAR Institute of Materials Research and Engineering (main image)

Cancer, food pathogens and biosecurity threats can all be detected using a sensing technique called surface enhanced Raman spectroscopy (SERS). To meet ever-increasing demands in sensitivity, however, signals from molecules of these agents require massive enhancement, and current SERS sensors require optimization. An A*STAR-led research team recently fabricated a remarkably regular array of closely packed gold nanoparticle clusters that will improve SERS sensors.

So-called 'Raman scattering' occurs when molecules scatter at wavelengths not present in the . These molecules can be detected with SERS sensors by bringing them into contact with a nanostructured , illuminated by a laser at a particular wavelength. An ideal sensor surface should have: dense packing of metal nanostructures, commonly gold or silver, to intensify Raman scattering; a regular arrangement to produce repeatable ; economical construction; and robustness to sustain sensing performance over time.

Few of the many existing approaches succeed in all categories. However, Fung Ling Yap and Sivashankar Krishnamoorthy at the A*STAR Institute of Materials Research and Engineering, Singapore, and co-workers produced closely packed nanocluster arrays of gold that incorporate the most desirable aspects for fabrication and sensing. In addition to flat surfaces, they also succeeded in coating fiber-optic tips with similarly dense nanocluster arrays (see image), which is a particularly promising development for remote-sensing applications, such as hazardous waste monitoring.

The researchers self-assembled their arrays by using surfaces coated with self-formed , to which smaller spontaneously attached to form clusters. "It was surprising to reliably attain feature separations of less than 10 nanometers, at high yield, across macroscopic areas using simple processes such as coating and adsorption," notes Krishnamoorthy.

By varying the size and density of the polymer features, Krishnamoorthy, Yap and co-workers tuned the cluster size and density to maximize SERS enhancements. Their technique is also efficient: less than 10 milligrams of the polymer and 100 milligrams of gold nanoparticles are needed to coat an entire 100 millimeter diameter wafer, or approximately 200 fiber tips. Both the polymer and the nanoparticles can be mass-produced at low cost. By virtue of being entirely 'self-assembled', the technique does not require specialized equipment or a custom-built clean room, so it is well suited to low-cost commercial implementation.

"We have filed patent applications for the work in Singapore, the USA and China," says Krishnamoorthy. "The arrays are close to commercial exploitation as disposable sensor chips for use in portable SERS sensors, in collaboration with industry."

Explore further: Nanoparticle technology triples the production of biogas

More information: Yap, F. L., Thoniyot, P., Krishnan, S. & Krishnamoorthy, S. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 6, 2056–2070 (2012). pubs.acs.org/doi/abs/10.1021/nn203661n

add to favorites email to friend print save as pdf

Related Stories

Biosensors: Sweet and simple

Apr 14, 2011

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by ...

Nanomaterials: Pillars of the assembly

Sep 29, 2011

The ever-increasing demand for enhanced performance in electronic devices such as solar cells, sensors and batteries is matched by a need to find ways to make smaller electrical components. Several techniques ...

ORNL nanoprobe creates world of new possibilities

Jul 15, 2004

A technology with proven environmental, forensics and medical applications has received a shot in the arm because of an invention by researchers at the Department of Energy's Oak Ridge National Laboratory. ORNL's nanoprobe, which ...

Nanoparticle imaging: A resonant improvement

Oct 28, 2011

Raman spectroscopy is a powerful technique for analyzing atomic structure based on the inelastic scatter of light from molecules, with diverse applications including medical imaging and chemical sensing. Researchers ...

Recommended for you

Nanoparticle technology triples the production of biogas

10 hours ago

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

12 hours ago

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0