Giant black holes lurking in survey data

Oct 08, 2012
Infrared colour image of ULASJ1234+0907 located 11 billion light years from Earth and one of the reddest objects in the sky. This red colour is caused by the enormous amounts of dust within this system. The dust preferentially absorbs bluer light and is responsible for obscuring this supermassive black hole in the visible wavelengths. Giant dusty black holes have therefore been hidden from view until now when cutting edge surveys at infrared wavelengths are allowing us to peer through the dust and locate them for the first time. Credit: Image created using data from UKIDSS and the Wide-field Infrared Survey Explorer (WISE) observatory

(Phys.org)—Scientists at the University of Cambridge have used cutting-edge infrared surveys of the sky to discover a new population of enormous, rapidly growing supermassive black holes in the early Universe. The black holes were previously undetected because they sit cocooned within thick layers of dust. The new study has shown however that they are emitting vast amounts of radiation through violent interactions with their host galaxies. The team publish their results in the journal Monthly Notices of the Royal Astronomical Society.

The most extreme object in the study is a called ULASJ1234+0907. This object, located in the direction of the of Virgo, is so far away that the light from it has taken 11 billion years to reach us, so we see it as it appeared in the . The monster black hole has more than 10 billion times the and 10,000 times the mass of the supermassive black hole in our own , making it one of the most massive ever seen.

Giant black holes lurking in survey data
Markarian 231, an example of a galaxy with a dusty rapidly growing supermassive black hole located 600 million light years from Earth. The black hole is the very bright source at the centre of the galaxy. Rings of gas and dust can be seen around it as well as “tidal tails” left over from a recent impact with another galaxy. Credit: hubblesite.org

The research indicates that that there may be as many as 400 such giant black holes in the part of the universe that we can observe. "These results could have a significant impact on studies of supermassive black holes" said Dr Manda Banerji, lead author of the paper. "Most black holes of this kind are seen through the matter they drag in. As the neighbouring material in towards the black holes, it heats up. Astronomers are able to see this radiation and observe these systems."

"Although these black holes have been studied for some time, the new results indicate that some of the most massive ones may have so far been hidden from our view." The newly discovered black holes, devouring the equivalent of several hundred Suns every year, will shed light on the governing the growth of all supermassive black holes.

Supermassive black holes are now known to reside at the centres of all galaxies. In the most massive galaxies in the Universe, they are predicted to grow through violent collisions with other galaxies, which trigger the formation of stars and provides food for the black holes to devour. These violent collisions also produce dust within the galaxies therefore embedding the black hole in a dusty envelope for a short period of time as it is being fed.

In comparison with remote objects like ULASJ1234+0907, the most spectacular example of a dusty, growing black hole in the local Universe is the well-studied galaxy Markarian 231 located a mere 600 million light years away. Detailed studies with the Hubble Space Telescope have shown evidence that Markarian 231 underwent a violent impact with another galaxy in the recent past. ULASJ1234+0907 is a more extreme version of this nearby galaxy, indicating that conditions in the early Universe were much more turbulent and inhospitable than they are today.

In the new study, the team from Cambridge used infrared surveys being carried out on the UK Infrared Telescope (UKIRT) to peer through the dust and locate the giant black holes for the first time. Prof. Richard McMahon, co-author of the study, who is also leading the largest infrared survey of the sky, said: "These results are particularly exciting because they show that our new infrared surveys are finding super massive black holes that are invisible in optical surveys. These new quasars are important because we may be catching them as they are being fed through collisions with other galaxies. Observations with the new Atacama Large Millimeter Array (ALMA) telescope in Chile will allow us to directly test this picture by detecting the microwave frequency radiation emitted by the vast amounts of gas in the colliding galaxies."

Explore further: Quest for extraterrestrial life not over, experts say

More information: The new work will appear in "Heavily Reddened Quasars at z~2 in the UKIDSS Large Area Survey: A Transition Phase in AGN Evolution" by Banerji, Manda; McMahon, Richard; Hewett, Paul; Alaghband-Zadeh, Susannah; Gonzalez-Solares, Eduardo; Venemans, Bram, Monthly Notices of the Royal Astronomical Society, in press. A preprint of the paper can be seen on ArXiV at arxiv.org/abs/1203.5530

Related Stories

Planets smashed into dust near supermassive black holes

Oct 28, 2011

(PhysOrg.com) -- Fat doughnut-shaped dust shrouds that obscure about half of supermassive black holes could be the result of high speed crashes between planets and asteroids, according to a new theory from ...

Small distant galaxies host supermassive black holes

Sep 15, 2011

(PhysOrg.com) -- Using the Hubble Space Telescope to probe the distant universe, astronomers have found supermassive black holes growing in surprisingly small galaxies. The findings suggest that central black ...

Black holes spinning faster than ever before

May 23, 2011

(PhysOrg.com) -- Two UK astronomers have found that the giant black holes in the centre of galaxies are on average spinning faster than at any time in the history of the Universe. Dr Alejo Martinez-Sansigre ...

Chandra finds nearest pair of supermassive black holes

Aug 31, 2011

(PhysOrg.com) -- Astronomers have used NASA's Chandra X-ray Observatory to discover the first pair of supermassive black holes in a spiral galaxy similar to the Milky Way. At a distance of 160 million light ...

Measuring galaxy black hole masses

May 27, 2011

(PhysOrg.com) -- Black holes, one of the most amazing and bizarre predictions of Einstein's theory of gravity, are irresistible sinks for matter and energy. They are so dense that not even light can escape ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (6) Oct 08, 2012
"Supermassive black holes are now known to reside at the centres of all galaxies."

An unwitting acknowledgement that the black hole is responsible for the galaxy formation. In LaViolette's 'Subquantum Kinectics', this finite density monster has grown from within so huge that it likely is very unstable, ejecting massive winds of new material, providing the means for the formation of the stars of it's galaxy. We see numerous examples of massive winds emanating from the galactic centers with no plausible explanations for an accretive source. Just hand waving, backed by some published paper nonsense.

And by the way, how could such a monster grow so big in 2 billion years? Wave those hands....

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...