Fluoride research could hold key to easier cleanup of toxic substances

October 3, 2012 by Tom Butler

(Phys.org)—A Florida State University chemist's work could lead to big improvements in our ability to detect and eliminate specific toxic substances in our environment.

Featured on the cover of the prestigious (JACS), Sourav Saha's specialized work to strip from the known as fluoride is producing a variety of unique results.  

"I started out with the very basic premise of trying to find new ways to detect toxic fluoride in solutions," said Saha, an assistant professor of chemistry at Florida State. "As I got further into that work I was able to create a compound that could actually strip the electrons right off the molecule, producing a variety of tangible benefits such as toxin detection and removal."

Saha's initial fluoride-detection work led to a $100,000 grant from the Petroleum Research Foundation to further explore the possibilities of his research. Using that money, he was able to bring in additional expertise and build his "fluoride-robbing" compound that is the central feature of the work featured on the JACS cover.

"This work is very exciting and novel because the results are surprising," said Timothy Logan, chairman of the Department of Chemistry and Biochemistry at Florida State. "Molecules always have affinity for electrons, with some molecules having a greater affinity than others. Flouride has the highest of all, so the ability to strip off electrons from fluoride, especially in the presence of other molecules with lower electron affinity, is truly unique."

Although Saha is excited about the possibilities of his new compound in toxin cleanup, he sees a huge variety of potential applications for his research.

"I think toxin removal is one of the most obvious and relatable benefits my work could lead to, but in reality, there are many additional implications this work could have on daily life," Saha said. "For instance, we could develop this research to create all new types of plastics that could exhibit unique qualities, or improve the effectiveness of devices, such as batteries, that are used to store and transfer energy."

Explore further: Waking up dormant HIV

More information: To read more about Saha's work in the JACS, visit pubs.acs.org/doi/abs/10.1021/ja303173n . To learn more about Saha, visit www.chem.fsu.edu/bio.php?id=838 .

Related Stories

Waking up dormant HIV

March 16, 2009

HAART (highly active anti-retroviral therapy) has emerged as an extremely effective HIV treatment that keeps virus levels almost undetectable; however, HAART can never truly eradicate the virus as some HIV always remains ...

Supramolecules get time to shine

July 12, 2011

(PhysOrg.com) -- What looks like a spongy ball wrapped in strands of yarn -- but a lot smaller -- could be key to unlocking better methods for catalysis, artificial photosynthesis or splitting water into hydrogen, according ...

Fluoride shuttle increases storage capacity

October 21, 2011

German researchers have developed a new concept for rechargeable batteries. Based on a fluoride shuttle -- the transfer of fluoride anions between the electrodes -- it promises to enhance the storage capacity reached by lithium-ion ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.