The determining factors of cell shape examined

October 4, 2012
The determining factors of cell shape examined
Credit: Thinkstock

A European team is investigating the role of the bacterial cell wall and the cytoskeleton in mediating cell shape. Results are expected to have broader implications for cell biology.

A fundamental question in cell biology is how a cell determines and regulates its shape. The current notion is that the cell is dynamically divided into compartments with the cytoskeleton playing a central organiser role by spatially coordinating key cellular functions.

Discovery that bacteria possess an actin-like (MreB family) cytoskeletal structure that may regulate cell morphogenesis has led to the design of the EU-funded 'Control of cell morphogenesis: and actin-cytoskeleton' (SHAPE) project. The key objective of the study is to elucidate the factors controlling bacterial cell wall morphogenesis and to determine the different functions of the bacterial cytoskeleton and the mechanisms underlying them.

The actin-like MreB is believed to form a filamentous network within , coordinating the movement of chromosomes or other macromolecules, thus playing a role analogous to the eukaryotic cytoskeleton in trafficking. However, the mechanistic details and the effectors used by MreB proteins to fulfill these roles remain to be elucidated.

Using the Gram-positive bacterium as a model, the SHAPE team is proposing to unmask MreB-, targets and effectors and determine the spatio-temporal organisation of the MreB cytoskeleton.

Results so far indicate that MreB do not form extended filaments in vivo but instead generate patches that move perpendicularly to the long axis of the cell. This also suggests that the movement of MreB is powered by the cell wall-synthesising complex.

The SHAPE project is looking into the determinants of , concentrating on the role of the MreB cytoskeleton. Apart from providing valuable insight into the underlying mechanisms that regulate MreB dynamics and function, study results could potentially be utilised as novel antimicrobial targets.

Explore further: Tumor suppressor APC could stop cancer through its effect on actin cytoskeleton

Related Stories

Team finds new building block in cells

August 2, 2010

( -- Zemer Gitai, an assistant professor of molecular biology at Princeton University, members of his laboratory, and scientists from the California Institute of Technology have published results in Nature Cell ...

Bacterial roundabouts determine cell shape

June 3, 2011

Almost all bacteria owe their structure to an outer cell wall that interacts closely with the supporting MreB protein inside the cell. As scientists at the Max Planck Institute for Biochemistry and at the French INRA now ...

How muscle develops: A dance of cellular skeletons

June 4, 2011

Revealing another part of the story of muscle development, Johns Hopkins researchers have shown how the cytoskeleton from one muscle cell builds finger-like projections that invade into another muscle cell's territory, eventually ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.