No evidence for 30-nm chromatin fibers in the mouse genome

Oct 04, 2012
No evidence for 30-nm chromatin fibers in the mouse genome
This shows DNA packaged into 10-nm chromatin fibers. Credit: Uta Mackensen, EMBO

Scientists in Canada and the United States have used three-dimensional imaging techniques to settle a long-standing debate about how DNA and structural proteins are packaged into chromatin fibres. The researchers, whose findings are published in EMBO reports, reveal that the mouse genome consists of 10-nm chromatin fibres but did not find evidence for the wider 30-nm fibres that were previously thought to be important components of the DNA architecture.

"DNA is an exceptionally long molecule that can reach several metres in length. This means it needs to be packaged into a highly compact state to fit within the limited space of the ," said David Bazett-Jones, Senior Scientist at the Hospital for Sick Children, Toronto, and Professor at the University of Toronto, Canada. "For the past few decades, scientists have favoured structural models for organization where DNA is first wrapped around proteins in nucleosomes. In one possible model, the strand of repeating is wrapped further into a higher-order thick 30-nm fibre. In a second model, the 30-nm fibre is not required to compact the DNA. Differences between these models have implications for the way the cell regulates the transcription of genes."

Chromatin is the complex of DNA and proteins that is the fundamental constituent of in the nucleus of the cell. The researchers used a combination of state-of-the-art imaging techniques, in this case energy spectroscopic imaging and , to generate high-resolution three-dimensional images of chromatin in . This approach allows for visual analysis of chromatin fibres without the need to add chemical agents to improve the contrast of images.

"Our results revealed that the 30-nm chromatin fibre model is not consistent with the structure we found in our three-dimensional spectroscopic images," said Bazett-Jones. "It was previously thought that the transition between thinner and thicker fibres represented a change from an active to repressed state of chromatin. However, our inability to detect 30-nm fibres in the leads us to conclude that the transcriptional machinery has widespread access to the DNA packaged into chromatin fibres."

The results are consistent with recent studies of the human genome which suggest that approximately 80% of the genome contains elements that are linked to biological function. Access to enhancers, promoters and other regulatory sequences on such a wide region of the genome means that all of these sites must be accessible. The 10-nm model of chromatin fibres provides sufficient access to DNA to allow potential target sites to be reached. The 30-nm model would not accommodate such widespread access.

The researchers offer several reasons for the observation of wider fibres in earlier studies. In some cases, the conditions outside of the cell, including those used in earlier studies where chromatin was extracted from the cell, may have given rise to structural artifacts. For some of the earlier spectroscopic studies, it may even be a question of poor resolution of existing 10-nm fibres.

Explore further: New insights into how different tissues establish their biological and functional identities

More information: www.nature.com/embor/journal/vaop/ncurrent/full/embor2012139a.html

Related Stories

Loosely coiled DNA helps trypanosomes make their escape

Jan 11, 2010

(PhysOrg.com) -- To escape the grip of the human immune system, Trypanosoma brucei, which causes African sleeping sickness, performs its acclaimed disappearing act. Every time the host’s immune cells get close to eliminating ...

Chromatin remodeling complex connected to DNA damage control

Aug 09, 2007

When molecular disaster strikes, causing structural damage to DNA, players in two important pathways talk to each other to help contain the wreckage, scientists at The University of Texas M. D. Anderson Cancer Center report ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

Apr 17, 2014

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...