Researchers find evidence that moon's Procellarum basin formed by asteroid strike

Oct 31, 2012 by Bob Yirka report
Location map of the LCP-rich exposures on the Moon. Credit: Nature Geoscience (2012) doi:10.1038/ngeo1614

(Phys.org)—Researchers at Japan's National Institute of Advanced Industrial Science and Technology propose in a paper published in the journal Nature Geoscience, that a strike by a large asteroid approximately 3.9 billion years ago, explains the geological characteristics of the moon's Oceanus Procellarum (Ocean of Storms) basin.

Scientists have known for more than half a century that the surface of the near side of the – the side closest to the Earth – differs significantly in appearance from the far side. Explanations for the differences have ranged from gravity effects from Earth to collisions by asteroids. One of the most profound differences is the Procellarum basin, a dark region on the near side surface that has caused some to name it the "Man in the Moon." Now new evidence by a team in Japan indicates that the 1,800 mile wide flattened area, may indeed have come about as the result of a collision with a large asteroid.

To come to this conclusion, the team has been analyzing mineral distribution on the surface of the moon using data obtained from the Japanese moon orbiter Kaguya/Selene. Using data from 70 million locations across the surface, they have found deposits of the low-calcium mineral pyroxene surrounding the Procellarum basin. Prior research by others has shown pyroxene can be linked to the melting of material brought up from the lunar mantle. In this case, the team suggests the mantel material was brought up from below and melted by the energy released as the moon was struck by an asteroid approximately 300 kilometers in diameter. In its aftermath, they suggest, a molten sea several hundred kilometers deep was formed in the crater that resulted, which cooled over time, eventually leading to the dark appearance of the basin we see today. Such a collision they claim, would have completely obliterated the crust at the impact site.

The team adds that subsequent smaller asteroid strikes would have blurred the edges of the impact zone making it difficult to discern the actual outline of the initial strike, leading to confusion over just how large of an area was affected by the large . The ring of pyroxene, they say, helps more clearly define its edges.

Explore further: Mysteries of space dust revealed

More information: Compositional evidence for an impact origin of the Moon's Procellarum basin, Nature Geoscience (2012) doi:10.1038/ngeo1614

Abstract
The asymmetry between the nearside and farside of the Moon is evident in the distribution of mare basalt, crustal thickness and concentrations of radioactive elements, but its origin remains controversial. According to one attractive scenario, a gigantic impact early in the Moon's history produced the observed dichotomy; the putative 3,000-km-diameter Procellarum basin has been suggested to be a relic of this ancient impact. Low-calcium pyroxene can be formed during an impact by melting a mixture of crust and mantle materials or by excavating differentiated cumulates from the lunar magma ocean. Therefore, the association of low-calcium pyroxene with a lunar basin could indicate an impact origin. Here we use spectral mapping data from KAGUYA/SELENE to show that low-calcium pyroxene is concentrated around two established impact structures, the South Pole–Aitken and Imbrium basins. In addition, we detect a high concentration of low-calcium pyroxene at Procellarum, which supports an impact origin of the ancient basin. We propose that, in forming the largest known basin on the Moon, the impact excavated the nearside's primary feldspathic crust, which derived from the lunar magma ocean. A secondary feldspathic crust would have later recrystallized from the sea of impact melt, leading to two distinct sides of the Moon.

add to favorites email to friend print save as pdf

Related Stories

Asteroid strikes cause the Moon's surface to smooth

Jul 18, 2012

The lunar surface is marred by impact craters, remnants of the collisions that have occurred over the past 4.5 billion years. The Orientale basin, the Moon's most recently formed sizeable crater, stands out from the rest. ...

The Moon puts on camo

Aug 30, 2010

A new geologic map of the moon's Schrodinger basin paints an instant, camouflage-colored portrait of what a mash-up the moon's surface is after eons of violent events. The geologic record at Schrödinger is ...

Recommended for you

Mysteries of space dust revealed

Aug 29, 2014

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

Aug 29, 2014

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

Aug 28, 2014

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 0