DNA's double stranded stretch

Oct 25, 2012

(Phys.org)—Theoretical physicists like to play with very unconventional toys. Manoel Manghi from Toulouse University in France and his colleagues have adopted a seemingly playful approach to examining what happens to a double stranded molecule of DNA when it is stretched to the breaking point, in a study about to be published in EPJ E. Instead of using optical tweezers to stretch DNA as previously done in experimental settings, the authors focused on using a theoretical model to account for the structural deformations of DNA and determine how its mechanical characteristics could explain certain biological processes.

Over fifteen years ago, scientists discovered that DNA undergoes two structural transitions when pulled from both ends. The problem is that in experimental conditions these two transitions can overlap and can therefore be difficult to observe. Instead, Manghi and colleagues relied on a standard mathematical tool referred to as a 'coupled discrete wormlike chain-Ising model' to simulate DNA stretching and match experimental observations.

Thanks to their theoretical approach, the authors confirmed that after overcoming initial resistance to stretching, at a force of around 65 piconewtons (pN) in strength, the DNA stretches to almost twice its original length while also becoming less rigid. They also confirmed the other known structural transition occurring at around 135 pN. Although the critical forces of both transitions depend on the DNA sequence, they found it is the second one that most depends on it.

Beyond 135pN, start peeling apart into single stranded DNAs that are similar to those obtained when DNA is heated up and undergoes thermal denaturation. This model thus bridges the gap between force-induced mechanical stretching and thermal denaturation and could potentially help understand how DNA performs its biological functions such as interaction with proteins and how it is packaged, say, in viruses.

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

More information: European Physical Journal E 35: 110, DOI 10.1140/epje/i2012-12110-2

Related Stories

Unraveling the DNA stretching mystery

Jan 20, 2011

(PhysOrg.com) -- Using a new experimental test structure, biophysicists at JILA have unraveled part of a 15-year mystery in the mechanics of DNA -- just how the molecule manages to suddenly extend to almost ...

Stretch a DNA Loop, Turn Off Proteins

Dec 05, 2006

It may look like mistletoe wrapped around a flexible candy cane. But this molecular model shows how some proteins form loops in DNA when they chemically attach, or bind, at separate sites to the double-helical ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 0

More news stories

Meth mouth menace

Something was up in Idaho. While visiting a friend in Athol, a small town north of Coeur d'Alene, Jennifer Towers, director of research affairs at the Tufts University School of Dental Medicine, noticed ...