Novel DNA architecture for nanotechnology

October 4, 2012
Credit: Thinkstock

The DNA structure as revealed by Watson and Crick is pivotal to the stability and replication of the DNA double helix. Replacement of the DNA base-pairs with other molecular entities is providing new functions for DNA and is receiving considerable attention.

DNA is nature's with the highest content of genetic information. Nanoscientists are looking into the opportunity of using DNA molecules in self-assembling and self-directing processes at the nano-scale level. For this purpose, they are investigating the construction of novel base-pairs and the ability of to transport electrons over long distances through the oxidation of guanines.

The objective of the EU-funded ' through multiple consecutive phenanthrenyl containing DNA' (ET DPHEN DNA) project was to synthesise DNA containing aromatic nucleobase surrogates that can facilitate electron transfer in a . Additionally, scientists aimed to discover and design novel electron acceptors with a fluorescent moiety to enable monitoring of electron transfer.

Various pyrene and phenanthrene aromatic nucleobase surrogates that varied in their were synthesised. With respect to the electron donors, phenothiazine and 1,5-diaminonapthalene electron donors were produced, compatible with oligonucleotide synthesis.

Instead of substituting known fluorescent nucleobases with a fluorescence quencher, scientists decided to conjugate fluorescent molecules to the natural nucleobases. To this end, they attached a fluorescently quenched anthracene to deoxyuridine and observed that quenching was preserved.

Incorporation of these into DNA will aid the monitoring of the electron transfer by fluorescence, a property which could be exploited in DNA-based biosensors by attaching the DNA to a gold surface and observing electron transfer by nanoelectrochemistry.

The ET DPHEN DNA work has broadened our understanding of electron transfer through DNA. Furthermore, it is envisioned that this novel DNA architecture and future designs may be applied in the area of DNA nanomaterials and in new bioanalytical methods for detecting DNA damage.

Explore further: Researchers illuminate mechanisms that regulate DNA damage control and replication

Related Stories

Light games with DNA

December 10, 2010

The diagnosis of hereditary diseases and the identification of genetic fingerprints hinge on high-sensitivity DNA imaging biotechnologies. These imaging tools detect specific genes in cells using fluorophores—fluorescent ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, researchers ...

Elusive Z- DNA found on nucleosomes

January 20, 2012

New research published in BioMed Central's open access journal Cell & Bioscience is the first to show that left-handed Z-DNA, normally only found at sites where DNA is being copied, can also form on nucleosomes.

Research sheds new light on kinky DNA

June 26, 2012

( -- A breakthrough in DNA research from the University of Reading could be used to devise new therapeutic treatments for cancer.

Recommended for you

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.