Researchers decipher the mecanism of membrane fission

Oct 26, 2012

A cell is composed of a nucleus which encloses its genetic information and the cytoplasm which is itself confined by an external membrane separating the cell from the outside world. The impermeability of the membrane and its ability to repair itself protect the cell from its environment. Although this membrane resistance is fundamental to the survival of the cell, the cell also needs to let in particles necessary for its proper functioning. The mechanism by which a small region of the cytoplasmic membrane invaginates to form a bud that will then be sectioned off to let molecules and other particles into the cell is known as endocytosis.

However, this natural process remains elusive due to the remarkable resistance of the . Aurélien Roux, a professor of biochemistry and member of the National Centres of Competence in Research (NCCR) , heads a team that focused on dynamin, a protein involved in endocytosis, to try to understand how an ultra-resistant membrane can nevertheless let external elements enter into the cell.

The power of dynamin

Scientists conducted in vitro experiments using artificial membrane tubules with a radius of 10 to 100 nanometres. They discovered that once dynamin is injected into the tube, it polymerises. In other words, it forms a helix around the tube and compresses it until it breaks. Dynamin produces the energy necessary for this constriction by "consuming" GTP molecules, much like a car consumes gasoline.

Based on these experiments, Professor Roux's team observed that the location of the is very specific and appears at the boundary between the helix and the membrane. "A change in radius that curves the membrane, caused by the polymerisation of dynamin, induces a stress that promotes the fracture," states Sandrine Morlot, researcher at the Department of Biochemistry. "This is new data allowing us to explain the process of fission."

The researchers were also able to measure the time it took to fission the membrane. Its duration depends on the mechanical properties of the membrane, which vary from one cell to another.

"We found that the ability of dynamin to break an ultra-resistant membrane is due to its torque, that is to say, its rotational force, which is vastly superior to that of other proteins," explains Professor Roux. "By decrypting the effect of dynamin on the membrane, we have come to understand the workings of membrane fission, a phenomenon which is certainly natural but remains extremely complex."

Explore further: Scientists find key to te first cell differentiation in mammals

Related Stories

Crystal structure shows how motor protein works

Sep 18, 2011

The crystal structure of the dynamin protein — one of the molecular machines that makes cells work — has been revealed, bringing insights into a class of molecules with a wide influence on health and disease.

Researchers clock the speed of brain signals

Jun 22, 2011

Two studies featuring research from Weill Cornell Medical College have uncovered surprising details about the complex process that leads to the flow of neurotransmitters between brain neurons -- a dance of ...

Recommended for you

Research helps identify memory molecules

18 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

19 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

19 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0