Studying the chemistry of protoplanetary disks now possible

October 4, 2012
Predicting the evolution of solar systems
Credit: Thinkstock

According to the nebular hypothesis, star formation produces a gaseous protoplanetary disk around it, providing the environment and material for planet formation. Studying these systems can generate information regarding how and when planets formed, and is a hot topic in astrophysics.

Until recently, in depth studying of protoplanetary disks was not possible. However, emerging telescope facilities provide large angular resolution and are expected to revolutionise our current knowledge on the chemistry of protoplanetary disks.

The huge amount of observational information will certainly need in order to guarantee a proper interpretation of the data. To this end, the EU project 'Chemistry in protoplanetary disks' (Cipdisks) proposed to develop a computational code in order to study the evolution of the chemical composition in the various regions of protoplanetary disks.

Ultraviolet radiation emitted by the star is known to interact with the gaseous and dusty material of the disk, determining the chemical structure in the disk surface and the emergent spectrum. To address this, scientists developed a code capable of computing the transfer of across the disk including all the discrete transitions due to the most abundant . This would allow the assessment of the photo-dissociation and photo-ionisation rates of the different species in the disk.

The Cipdisks approach can potentially be used to systematically study the different types of protoplanetary disks and the influence of several stellar and disk parameters on their . The detailed study of fundamental processes central to the chemistry of protoplanetary disks, is expected to unravel new information regarding the evolution of our solar system.

Explore further: Water Vapor Detected in Protoplanetary Disks

Related Stories

Water Vapor Detected in Protoplanetary Disks

March 19, 2008

Water is an essential ingredient for forming planets, yet has remained hidden from scientists searching for it in protoplanetary systems, the spinning disks of particles surrounding newly formed stars where planets are born. ...

First Direct Imaging of a Young Binary System

December 15, 2009

(PhysOrg.com) -- A team of astronomers from The Graduate University for Advanced Studies, the National Astronomical Observatory of Japan, and other universities have captured the first direct image of a young binary star ...

How the Earth survived birth

January 7, 2010

For the last 20 years, the best models of planet formation—or how planets grow from dust in a gas disk -- have contradicted the very existence of Earth. These models assumed locally constant temperatures within a disk, ...

A Drop in the Bucket

February 18, 2010

A new technique is being developed to detect water in the protoplanetary disks of other solar systems. If successful, it would help in our understanding of how habitable planets form.

Recommended for you

WISE, Fermi missions reveal a surprising blazar connection

August 24, 2016

Astronomers studying distant galaxies powered by monster black holes have uncovered an unexpected link between two very different wavelengths of the light they emit, the mid-infrared and gamma rays. The discovery, which was ...

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

Test for damp ground at Mars streaks finds none

August 24, 2016

Seasonal dark streaks on Mars that have become one of the hottest topics in interplanetary research don't hold much water, according to the latest findings from a NASA spacecraft orbiting Mars.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.