Cellular accumulation of misfolded protein clumps may be a survival advantage rather than a liability, researchers find

Oct 05, 2012
Under the right conditions, as shown in both images, Mod5 can be induced to misfold and accumulate as fibrous aggregates—a typical characteristic of prion proteins (scale, 100 µm). Credit: 2012 American Association for the Advancement of Science

Most proteins have a single 'correct' way to fold; typically, improperly folded proteins are promptly eliminated by cells. However, certain misfolded proteins have a tendency to aggregate in dense fibrous clumps known as amyloid plaques. In humans, this accumulation is often a pathological feature, as observed in Alzheimer's or Huntington's disease.

Surprising findings, however, have demonstrated that amyloid formation may also be beneficial for cells under certain conditions. They conducted an assay to identify yeast prions—proteins with the capacity to misfold in a manner that induces similar misfolding in other molecules, resulting in amyloid formation. Their screen revealed 66 candidate yeast prions, but Tanaka and colleagues focused on Mod5, a particularly interesting protein.

The Mod5 enzyme is normally responsible for introducing chemical modifications to the transfer RNA molecules that regulate synthesis of new proteins. The researchers demonstrated that it can also be induced to assemble into amyloid aggregates. This misfolding is also 'contagious': introduction of Mod5 into that express only the soluble form of the protein ([mod- ] cells) gave rise to cells that instead produce the aggregating prion form of Mod5 ([MOD+] cells).

This shift proved to have important physiological consequences. Mod5 normally makes use of a chemical called DMAPP, which is also used in production of the ergosterol. The reduced levels of functional Mod5 in [MOD+] cells therefore leave more DMAPP available for erogsterol production. "[MOD+] cells may have thicker cell membranes, which would protect the yeast cells from attack by antifungal drugs," says Tanaka. Several experiments confirmed this protective effect, and prion-forming [MOD+] cells proved more resistant to antifungal agents such as fluconazole than their soluble [mod- ] counterparts.

This resistance comes at a cost. "[mod- ] yeast have a growth advantage in the absence of ," says Tanaka. As such, the [mod- ] state is selected for unless the presence of drugs makes the reduced growth rate the only alternative to poisoning. These findings demonstrate an unexpected functional importance for protein 'misfolding'. Tanaka notes that there is even evidence to suggest that the amyloids formed in Alzheimer's and other neurodegenerative diseases may accumulate as part of a protective mechanism triggered by cellular stress.

Future studies should reveal more about how this surprising defense mechanism is triggered and regulated. "We would like to learn more about how protein aggregation can regulate a cell's stress response," says Tanaka.

Explore further: Compound from soil microbe inhibits biofilm formation

More information: Suzuki, G., Shimazu, N. & Tanaka, M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359 (2012). www.sciencemag.org/content/336/6079/355.abstract

Related Stories

New yeast prion helps cells survive

Apr 23, 2012

One of the greatest mysterious in cellular biology has been given a new twist thanks to findings reported in Science. Researchers at the RIKEN Brain Science Institute show that prions, proteins that transm ...

Cellular stress can induce yeast to promote prion formation

Jul 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Study finds two gene classes linked to new prion formation

May 26, 2011

Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Recommended for you

Compound from soil microbe inhibits biofilm formation

11 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

14 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

15 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.