Study shows how cells form 'trash bags' for recycling waste

Oct 23, 2012 by Krishna Ramanujan
Study shows how cells form 'trash bags' for recycling waste
Left: An image from an electron microscope of a purified ESCRT-III helix. The scale bar is 100 nanometers. Right: A model of how the ESCRT-III spring drives membrane curvature to create vesicles inside cellular compartments known as endosomes. Credit: Emr Lab

(Phys.org)—To remove waste from cells, a class of membrane-sculpting proteins create vesicles—molecular trash bags—that carry old and damaged proteins from the surface of cellular compartments into internal recycling plants where the waste is degraded and components are reused.

A Cornell study in the Oct. 12 issue of Cell may explain how these membrane-sculpting proteins, known as Endosomal Sorting Complexes Required for Transport (ESCRTs), create vesicles, a process that has remained a mystery since ESCRTs were discovered more than a decade ago.

If these "trash bags" are unable to make their deliveries, numerous diseases including cancer and emerge. Furthermore, viruses like HIV can hijack these membrane-sculpting proteins to burst out of infected cells.

The study was led by Mike Henne and Nicholas Buchkovich, postdoctoral researchers in the lab of Scott Emr, the paper's senior author and director of Cornell's Weill Institute for . It describes how the researchers reconstituted a portion of the ESCRT machinery—a complex known as ESCRT-III—that bends the cellular membranes, a key step before the envelope eventually pinches off and closes to form vesicles. The researchers then visualized the membrane-bending process using a high-power .

The researchers were able to show that proteins within the ESCRT-III complex work in stages where one protein assembles into while other proteins transform these spirals further into tighter corkscrew-shaped helices, which then bend the prior to it forming into a vesicle.

"We believe these experiments tell us that ESCRT-III is a dynamic complex that generates vesicles by forming a spring-like that can bend membranes," Henne said. If true, this could be a novel method for creating membrane curvature in cells, he added.

Altogether, the ESCRT machinery is composed of five distinct complexes that must work together to do their job. These complexes are thought to recruit one another to the surface of vesicles in a specific sequence of events.

After visualizing the ESCRT-III complex, the researchers examined how ESCRT-III interacts with its neighbor and recruiter, ESCRT-II. They found that ESCRT-II controlled ESCRT-III architecture, but also works with ESCRT-III to create tiny ESCRT-III rings on the membrane surface. Since ESCRT-II contains a specialized protein responsible for grabbing trash, the researchers believe that ESCRT-II and ESCRT-III work together to first grab and then trap cellular garbage in this ESCRT-III ring before the ring eventually matures into the membrane bending spring.

Vesicles hold different cellular materials, and many of them carry protein waste. They also regulate cell-signaling receptors at the cell surface by internalizing them and thereby shutting them down, before they are carried to the cell's recycling plants, known as lysosomes, where they are degraded by digestive enzymes.

Uncovering these steps of the process opens the door for future research by Emr's lab to explore exactly how the final moment of vesicle formation—the "pinching off" step that seals the top of the vesicular bag known as "scission"—is mediated. Vesicle scission remains one of the outstanding questions in the field.

Explore further: Fighting bacteria—with viruses

Related Stories

How protein receptors on cells switch on and off

Jan 16, 2009

Cornell researchers have provided new insight into the molecular mechanism underlying an essential cellular system. They have discovered how receptors on cell surfaces turn off signals from the cell's environment, ...

The Handicraft of Cellular Transport Complexes

May 25, 2010

(PhysOrg.com) -- A protein complex, which is an important link in a cellular transport chain, also initiates the assembly of the next link in the chain. This newly-won insight will now allow a better understanding ...

When cells divide

Mar 28, 2011

For two independent daughter cells to emerge from a cell division, the membrane of the dividing cell must be severed. In the latest issue of Science, a team led by Daniel Gerlich, Professor at the Institute of Bio ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rod_russell_9
2.3 / 5 (6) Oct 23, 2012
Amazing! Evolution by Chance is so incredible! So much more advanced than even the human mind! Darwin, if you only knew how wise you were.