New research shows how bacterium in Mono Lake survive high arsenic concentrations

Oct 04, 2012 by Bob Yirka report

(Phys.org)—A team of Israeli, French and Swiss biologists have discovered how a strain of the bacterium Halomonas known as GFAJ-1, manages to survive in California's Mono Lake despite arsenic levels that would kill most other living things. As explained in their article, published in the journal Nature, this phenomenon is due to the differences in the ion bonding angle between proteins in the bacteria and arsenate as compared to phosphate, which results in weaker bonding with the arsenate and a preference for phosphate.

This new research essentially puts an end to arguments, put forth by a paper published two years ago in the , that the was somehow able to replace phosphorus in its DNA with arsenic, making it the only known form of life able survive without the six : hydrogen, oxygen, nitrogen, phosphorus, sulfur and carbon.

To find out how GFAJ-1 is able to survive in such a , the research team studied four types of bacteria, including GFAJ-1, specifically focusing on the bacteria's phosphate-. Two of the bacteria types were resistant to arsenate (a combination of oxygen and arsenic), while the other two were sensitive to it. All four bacteria were placed in containers with identical amounts of phosphate, but differing amounts of arsenic, and allowed to sit for a full day. The researchers wanted to see how adept the bacteria were at differentiating between the two.

All five sample types were then examined to see how much of the arsenic managed to bind to the proteins: the researchers found that all five showed a preference to binding with phosphate. One bacterium in particular, GFAJ-1, displayed a 4,500-fold preference.

To better understand why the proteins bound more easily to the phosphate, the team took an even closer look and found that it all came down to the slightly different shapes of the phosphate and arsenate ions, which created a difference in the bonding angles with the proteins. The phosphate angles are closer to the optimal 180 degrees than the arsenate, allowing them to bond more easily. Thus, GFAJ-1's tendency to let phosphate in, while keeping arsenic out, is explained.

Explore further: Breakthrough study discovers six changing faces of 'global killer' bacteria

More information: The molecular basis of phosphate discrimination in arsenate-rich environments, Nature (2012) doi:10.1038/nature11517

Abstract
Arsenate and phosphate are abundant on Earth and have striking similarities: nearly identical pKa values1, 2, similarly charged oxygen atoms, and thermochemical radii that differ by only 4% (ref. 3). Phosphate is indispensable and arsenate is toxic, but this extensive similarity raises the question whether arsenate may substitute for phosphate in certain niches4, 5. However, whether it is used or excluded, discriminating phosphate from arsenate is a paramount challenge. Enzymes that utilize phosphate, for example, have the same binding mode and kinetic parameters as arsenate, and the latter's presence therefore decouples metabolism6, 7. Can proteins discriminate between these two anions, and how would they do so? In particular, cellular phosphate uptake systems face a challenge in arsenate-rich environments. Here we describe a molecular mechanism for this process. We examined the periplasmic phosphate-binding proteins (PBPs) of the ABC-type transport system that mediates phosphate uptake into bacterial cells, including two PBPs from the arsenate-rich Mono Lake Halomonas strain GFAJ-1. All PBPs tested are capable of discriminating phosphate over arsenate at least 500-fold. The exception is one of the PBPs of GFAJ-1 that shows roughly 4,500-fold discrimination and its gene is highly expressed under phosphate-limiting conditions. Sub-ångström-resolution structures of Pseudomonas fluorescens PBP with both arsenate and phosphate show a unique mode of binding that mediates discrimination. An extensive network of dipole–anion interactions8, 9, and of repulsive interactions, results in the 4% larger arsenate distorting a unique low-barrier hydrogen bond. These features enable the phosphate transport system to bind phosphate selectively over arsenate (at least 103 excess) even in highly arsenate-rich environments.

Related Stories

Critics raise doubts on NASA's arsenic bacteria

Dec 09, 2010

(PhysOrg.com) -- NASA’s announcement last week that bacteria had been discovered that appeared to replace phosphorus with arsenic and thrive even in the most poisonous environments, has now come under ...

Extra-terrestrial life remains terrestrial

Jul 11, 2012

(Phys.org) -- A study by ETH Zurich researchers demonstrates that the “arsenic bacterium” postulated as a spectacular new life form by NASA in 2010 cannot do without phosphorus. This demonstrates the continuing validity of a central d ...

Arsenic hyperaccumulating ferns: How do they survive?

Jun 08, 2010

Arsenic is toxic to most forms of life, and occurs naturally in soil and ground water in many regions of the world. Chronic exposure to arsenic has been linked to lung, bladder and kidney cancer, and thus ...

Recommended for you

Plants prepackage beneficial microbes in their seeds

Sep 29, 2014

Plants have a symbiotic relationship with certain bacteria. These 'commensal' bacteria help the pants extract nutrients and defend against invaders – an important step in preventing pathogens from contaminating fruits and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
not rated yet Oct 04, 2012
Delicious irony in that the "arsenic life" claim is predicted by the organism being better than others in handling _phosphate_.