Astronomers develop technique for mapping the universe in 3-D

Oct 23, 2012
Astronomers develop technique for mapping the universe in 3-D
Galaxy cluster MACSJ0717.5+3745.

Combining observations from Mauna Kea with data taken by telescopes in space, astronomers at the Institute for Astronomy (UH Manoa) and their collaborators have developed a technique that allows them to map collisions of giant galaxy clusters in three dimensions. 

Astronomers studying the solar system are fortunate. Their targets move, rotate, obscure and deflect each other on timescales of hours, months or years, allowing researchers to see them from different angles.  Scientists exploring the are at a disadvantage in this regard. Most of their targets, such as , galaxies, or clusters of galaxies, are so huge that it takes tens or hundreds of millions of years for an object to present us with a noticeably changed view.

"Being unable to see these large-scale structures from different angles makes it very difficult to figure out their three-dimensional shapes, let alone their relative motions and interactions," explains Harald Ebeling, IfA astronomer and an expert on .  "All we see in our images is a 2-D projection of a 3-D structure onto the plane of the sky."

Luckily, when two galaxy clusters collide, astronomers can make use of a clever combination of observations to make the invisible visible. In three recent studies, Dr. Ebeling and an international team of collaborators created 3-D models of merging galaxy clusters. Creating these models requires mapping all the components of a cluster: the galaxies that we see in visible light, the hot gas permeating the cluster that emits X-rays, and the invisible dark matter that can be detected only because its gravity distorts the images of objects behind the cluster.

To collect all these data, Ebeling's team used three world-class observatories:  the Mauna Kea Observatories (specifically, the of the W.M. and the Canada-France-), the Chandra X-ray Observatory and the .

Combining the data to create a credible 3-D model of a complicated system like a merging cluster still involves much physical interpretation. Admits Li-Yen Hsu, IfA graduate student and lead author of one of the three studies, "Our understanding of the shape and motion of the cluster kept evolving as we added more and more observational evidence. It's a little like solving a jigsaw puzzle with half of the pieces missing."

Eventually, enough pieces of the puzzle were collected to unravel, for instance, the geometry of MACSJ0717.5+3745, a giant triple merger of clusters fed by a filament of dark matter that extends 60 million light-years into space. The team was also able to measure the mass of the entire structure and found that filaments may contain more than half of the mass of the entire universe.

Two other cluster mergers, examined in studies led by Hsu and fellow IfA graduate student I-Ting Ho, turned out to proceed along trajectories that are much more complex than suggested by the systems' appearance in projection on the sky. By revealing these objects' 3-D geometry, scientists can now correct for projection effects and determine the true properties of merging clusters.

The results of these 3-D reconstructions of some of the most massive structures in the universe will appear in three articles to be published by the Monthly Notices of the Royal Astronomical Society.

Explore further: Toothpaste fluorine formed in stars

More information: www.ifa.hawaii.edu/info/press-… leases/3-D_Universe/

Related Stories

When galaxy clusters collide

Jan 10, 2012

A UC Davis graduate student who is leading a study of the collision of galaxy clusters 5 billion light years away will discuss the team's findings today, Jan. 10, in a press briefing at the annual meeting of the American ...

Centuries-old math formula helps map galaxy clusters

Jun 09, 2011

(PhysOrg.com) -- Across the universe, galaxies band together in clusters so huge it can take 10 million years for light to travel from one end of a galaxy cluster to the other. Probing these metropolises is ...

Dark matter core defies explanation

Mar 02, 2012

(PhysOrg.com) -- Astronomers using data from NASA's Hubble Telescope have observed what appears to be a clump of dark matter left behind from a wreck between massive clusters of galaxies. The result could ...

Dark matter filament studied in 3-D for the first time

Oct 16, 2012

(Phys.org)—Astronomers using the NASA/ESA Hubble Space Telescope have studied a giant filament of dark matter in 3D for the first time. Extending 60 million light-years from one of the most massive galaxy ...

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Recommended for you

Toothpaste fluorine formed in stars

4 hours ago

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

Swirling electrons in the whirlpool galaxy

Aug 20, 2014

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dogbert
2.3 / 5 (4) Oct 23, 2012
We may certainly interpolate a 3D structure from 2D data. We may even construct computer simulations of our interpolation. But we should be careful lest we begin to believe that our interpolation and simulation is somehow more real than the 2D data we used to create our simulation.
antialias_physorg
5 / 5 (1) Oct 23, 2012
It's certainly better than believing that the galaxy is actually 2D

The whole point is to reconstruct to something that is more useful than the original pic.