Why astronauts experience low blood pressure after returning to Earth from space

Oct 25, 2012

When astronauts return to Earth, their altitude isn't the only thing that drops—their blood pressure does too. This condition, known as orthostatic hypotension, occurs in up to half of those astronauts on short-term missions (two weeks or less) and in nearly all astronauts after long-term missions (four to six months). A new research report published online in The FASEB Journal solves the biological mystery of how this happens by showing that low gravity compromises the ability of arteries and veins to constrict normally, inhibiting the proper flow of blood. Prevention and treatment strategies developed for astronauts may also hold promise for elderly populations on Earth who experience orthostatic hypotension more than any other age group.

"The idea of space exploration has been tantalizing the imagination of humans since our early existence. As a scientist, I have had the opportunity to learn that there are many medical challenges associated with travel in a , such as orthostatic hypotension, and the recently recognized that occurs in astronauts," said Michael D. Delp, Ph.D., a researcher involved in the work from the Department of Applied Physiology and Kinesiology, and the Center for Exercise Science at the University of Florida in Gainesville, Florida. "Although I have come to realize that it is unlikely I will ever get to fulfill my childhood dream of flying in space, I take great satisfaction with helping in the discovery of how microgravity alters the human body and how we can minimize these effects, so humans can safely explore the bounds of our universe."

To make this discovery, Delp and colleagues examined arteries and veins from mice housed at in Florida with blood vessels from groups of mice flown on three of the last five space shuttle missions—STS-131, STS-133 and STS-135. Mice flown on the STS-131 and STS-135 missions were tested immediately after returning to Earth, whereas mice from STS-133 were tested one, five and seven days after landing. Not only did they find that these mice experienced the equivalent of orthostatic in humans, they also discovered that it takes as many as four days in normal gravity before the condition is reversed.

"There has been considerable interest in sending humans to the moon, asteroids, and Mars," said Gerald Weissmann, M.D., Editor-in-Chief of The , "but what we're finding is that extended space missions have their own inherent risks above and beyond the obvious. If we ever hope to visit distant worlds for extended periods of time—or colonize them permanently—we've got to figure out how to mitigate the effects that low and no gravity has on the body. This report brings us an important step closer to doing just that."

Explore further: Why is Venus so horrible?

More information: FASEB J doi:10.1096/fj.12-218503

Related Stories

Space Shuttle Closer to Launch

Feb 14, 2007

Space Shuttle Atlantis was mated to the orange external tank and twin solid rocket boosters last week. The entire assembly is stacked on the mobile launcher platform and is targeted to roll out to Launch Pad ...

Crew assigned on final NASA shuttle launch

Sep 15, 2010

NASA announced the four astronauts who will make up the crew of STS-335, the rescue mission that would fly only if needed to bring home the members of space shuttle Endeavour's STS-134 mission, currently the final scheduled ...

NASA Aims for 4 Shuttle Flights in 2007

Apr 17, 2007

NASA has announced a revised launch schedule for the upcoming Space Shuttle missions. The revised schedule follows a review of repairs to the insulation on the Shuttle's external fuel tank, which was damaged ...

Space shuttle Atlantis, 7 astronauts back on Earth

Nov 27, 2009

Space shuttle Atlantis and its crew of seven astronauts ended an 11-day journey of nearly 4.5 million miles with a 9:44 a.m. EST landing Friday at NASA's Kennedy Space Center in Florida.

Recommended for you

SDO captures images of two mid-level flares

14 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

21 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.