Another advance on the road to spintronics: Researchers unlock ferromagnetic secrets of promising materials

Oct 15, 2012 by Lynn Yarris
With the HARPES technique, a beam of hard x-rays flashed on a sample causes photoelectrons from within the bulk to be emitted. Measuring the kinetic energy of these photoelectrons and the angles at which they are ejected reveals much about the sample’s electronic structure. Here the Mn atoms in GaMnAs are shown to be aligned ferromagnetically, with all their atomic magnets pointing the same way. Credit: Alex Gray, Stanford and SLAC

(Phys.org)—Spintronic technology, in which data is processed on the basis of electron "spin" rather than charge, promises to revolutionize the computing industry with smaller, faster and more energy efficient data storage and processing. Materials drawing a lot of attention for spintronic applications are dilute magnetic semiconductors – normal semiconductors to which a small amount of magnetic atoms is added to make them ferromagnetic. Understanding the source of ferromagnetism in dilute magnetic semiconductors has been a major road-block impeding their further development and use in spintronics. Now a significant step to removing this road-block has been taken.

A multi-institutional collaboration of researchers led by scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), using a new technique called HARPES, for Hard x-ray Angle-Resolved PhotoEmission Spectroscopy, has investigated the bulk of the prototypical dilute magnetic semiconductor gallium manganese arsenide. Their findings show that the material's ferromagnetism arises from both of the two different mechanisms that have been proposed to explain it.

"This study represents the first application of HARPES to a forefront problem in materials science, uncovering the origin of the ferromagnetism in the so-called dilute magnetic semiconductors," says Charles Fadley, the physicist who led the development of HARPES. "Our results also suggest that the HARPES technique should be broadly applicable to many new classes of materials in the future."

Fadley, who holds joint appointments with Berkeley Lab's Division and the University of California (UC) Davis where he is a Distinguished Professor of Physics, is the senior author of a paper describing this work in the journal . The paper is titled "Bulk electronic structure of the dilute magnetic semiconductor GaMnAs through hard X-ray angle-resolved photoemission." The lead and corresponding author is Alexander Gray, formerly with Fadley's research group and now with the Stanford University and the SLAC National Accelerator Laboratory.

HARPES data on GaMnAs indicate that the ferromagnetism of dilute magnetic semiconductors arise from two distinct mechanisms.

For the semiconductors used in today's computers, tablets and smart phones, etc., once a device is fabricated it is the electronic structures below the surface, in the bulk of the material or in buried layers, that determine its effectiveness. HARPES, which is based on the photoelectric effect described in 1905 by Albert Einstein, enables scientists to study bulk electronic effects with minimum interference from surface reactions or contamination. It also allows them to probe buried layers and interfaces that are ubiquitous in nanoscale devices, and are key to smaller logic elements in electronics, novel memory architectures in , and more efficient energy conversion in photovoltaic cells.

"The key to probing the bulk electronic structure is using hard x-rays, which are x-rays with sufficiently high photon energies to eject photoelectrons from deep beneath the surface of a solid material," says Gray, who worked with Fadley to develop the HARPES technique. "High-energy photons impart high kinetic energies to the ejected photoelectrons, enabling them to travel longer distances within the solid. The result is that more of the signal originating from the bulk will be detected by the analyzer."

In this new study, Gray and Fadley and their collaborators, used HARPES to shed important new light on the electronic bulk structure of gallium manganese arsenide (GaMnAs). As a semiconductor, is second only to silicon in widespread use and importance. If a few percent of the gallium atoms in this semiconductor are replaced with atoms of manganese the result is a dilute magnetic semiconductor. Such materials would be especially well-suited for further development into spintronic devices if the mechanisms behind their ferromagnetism were better understood.

This image shows Alexander Gray (left) and Charles Fadley at Beamline 9.3.1 of Berkeley Lab's Advanced Light Source where they are now carrying out HARPES experiments. Credit: Roy Kaltschmidt, Berkeley Lab

"Right now the temperature at which gallium manganese arsenide operates as a dilute magnetic semiconductor is 170 Kelvin," Fadley says. "Understanding the actual mechanism by which the magnetic moments of individual manganese atoms are coupled so as to become ferromagnetic is critical to being able to design future materials that would operate at room temperature."

The two prevailing theories behind the origin of ferromagnetism in GaMnAs and other dilute magnetic semiconductors are the "p-d exchange model" and the "double exchange model." According to the p-d exchange model, ferromagnetism is mediated by electrons residing in the valence bands of gallium arsenide whose influence extends through the material to other manganese atoms. The double exchange model holds that the magnetism-mediating electrons reside in a separate impurity band created by doping the gallium arsenide with manganese. These electrons in effect jump back and forth between two manganese atoms so as to lower their energy when their ferromagnetic magnets are parallel.

"Our bulk-sensitive HARPES measurements revealed that the manganese-induced impurity band is located mostly between the gallium arsenide valence-band maximum and the Fermi level, but the manganese states are also merged with the gallium arsenide valence bands," Gray says. "This is evidence that the two mechanisms co-exist and both act to give rise to ."

Adds Fadley, "We now have a better fundamental understanding of electronic interactions in dilute magnetic semiconductors that can suggest future materials with different parent semiconductors and different magnetic dopants. HARPES should provide an important tool for characterizing these future materials."

Gray and Fadley conducted this study using a high intensity undulator beamline at the SPring8 synchrotron radiation facility in Hyogo, Japan, which is operated by the Japanese National Institute for Materials Sciences. New HARPES studies are now underway at Berkeley Lab's Advanced Light Source (ALS) using the Multi-Technique Spectrometer/Diffractometer endstation at the hard x-ray photoemission beamline (9.3.1).

Explore further: Global scientific team 'visualizes' a new crystallization process (w/ video)

More information: Co-authoring the Nature Materials paper with Gray and Fadley were Jan Minár, Shigenori Ueda, Peter Stone, Yoshiyuki Yamashita, Jun Fujii, Juergen Braun, Lukasz Plucinski, Claus Schneider, Giancarlo Panaccione, Hubert Ebert, Oscar Dubon and Keisuke Kobayashi.

Related Stories

Mediating magnetism

May 04, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.