X-rays reveal the self-defence mechanisms of bacteria

Sep 14, 2012
The toxins normally bind very strongly to the antitoxins and are thus not only inactive, but also prevent the production of more toxin from the information encoded in the bacterial DNA. During the dormant state, however, the antitoxins are degraded, and the toxins released (step 1). The free toxins now bind to unoccupied antitoxins on DNA within the area encoding the toxin-antitoxin couple (step 2). Binding increasing amounts of toxin eventually leads to the release of the molecules from the gene (steps 3 and 4) and finally to new toxin production. Credit: Ditlev E. Brodersen

A research group at Aarhus University has gained unique insight into how bacteria control the amount of toxin in their cells. The new findings can eventually lead to the development of novel forms of treatment for bacterial infections.

Many pathogenic bacteria are able to go into a dormant state by producing persister cells that are not susceptible to conventional antibiotics. This causes serious problems in the treatment of life-threatening diseases such as tuberculosis, where the presence of persister cells often leads to a resurgence of infection following .

At the molecular level, the formation of persister cells is due to the presence of toxins that are produced by the bacteria themselves, and which enable them to enter the dormant state. During this hibernation period, the bacteria constantly regulate the amount of toxin at exactly the same level and thus maintain the dormant state.

In an article recently published in the American scientific journal Structure, the researchers at the Department of and Genetics, Aarhus University, present new results that reveal the molecular details of the of toxins.

By isolating and crystallising the toxin molecules and their molecular companions – the antitoxins – and by subsequently exposing the crystals to strong X-rays, the research team (consisting of the two PhD students Andreas Bøggild and Nicholas Sofos and Associate Professor Ditlev E. Brodersen) gained unique insight into how bacteria control the amount of toxin in the cell (illustrated in the info box).

The new findings can eventually lead to the development of entirely new forms of treatment of bacterial infections that work initially by blocking function and production, and subsequently by using traditional antibiotics to fight the .

Explore further: Sizing up cells: Study finds possible regulator of growth

More information: www.sciencedirect.com/science/… ii/S0969212612002997

add to favorites email to friend print save as pdf

Related Stories

Fighting bacteria's strength in numbers

May 17, 2012

Scientists at The University of Nottingham have opened the way for more accurate research into new ways to fight dangerous bacterial infections by proving a long-held theory about how bacteria communicate ...

Bacteria poison themselves from within

Mar 23, 2011

(PhysOrg.com) -- The research group led by Anton Meinhart at the Max Planck Institute for Medical Research in Heidelberg has shown that proteins from the zeta toxin group trigger a self-destructive mechanism ...

Turning bacteria against themselves

Feb 08, 2011

Bacteria often attack with toxins designed to hijack or even kill host cells. To avoid self-destruction, bacteria have ways of protecting themselves from their own toxins.

Recommended for you

The origins of polarized nervous systems

1 hour ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

5 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

6 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

21 hours ago

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.