New research uncovers path to defect-free thin films

September 20, 2012

(—A team led by Oak Ridge National Laboratory's Ho Nyung Lee has discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic sensors and a host of energy-related materials.

The finding, published in , could change the conventional wisdom that accommodating the strain inherent during the formation of epitaxial thin films necessarily involves structural defects, said Lee, a member of the Department of Energy lab's Materials Science and Technology Division. Instead, the researchers found that some materials, in this case cobaltite, form structurally well ordered atomic patterns that can change their magnetic properties and effectively minimize the size mismatch with the crystalline substrate.

Epitaxial , used in nanotechnology and , are created by growing a crystal layer of one material on another in such a way that the align. The challenge is to grow the film coherently with minimal defects, which can have a catastrophic effect on a material's performance.

"We discovered properties that were not readily apparent in crystal, or bulk, form, but in thin-film form we were able to clearly see the atomically ordered lattice structure of lanthanum cobaltite," Lee said. "With this knowledge, we hope to be able to tailor the physical properties of a material for many information and energy technologies."

The researchers studied the material in different strain states using complemented by X-ray and optical spectroscopy. Using these instruments, the scientists could see unconventional strain relaxation behavior that produced stripe-like lattice patterns. The result is a material with useful magnetic properties and highly suitable for sensors and ionic conductors used in, for example, batteries.

This discovery and the ability to engineer the structure of materials could lead to advanced cathode materials in solid oxide fuel cells and batteries that can be charged much faster.

"Since cobaltites are promising candidates for , ionic conductors and surface catalysts, this discovery provides a new understanding that can be used for artificial tuning of magnetism and ionic activities," Lee said.

Explore further: In Brief: Nanodots to the rescue

More information: "Strain-Induced Spin States in Atomically Ordered Cobaltites,"

Related Stories

In Brief: Nanodots to the rescue

May 11, 2011

By applying the magnetic properties of iron nanodots to complex materials, a research team has overcome an obstacle to getting ultra-thin or highly strained films to perform on par with their bulk counterparts.

Lighting the Way to Better Nanoscale Films

August 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may provide a cheaper ...

ORNL finding has materials scientists entering new territory

February 21, 2012

Solar cells, light emitting diodes, displays and other electronic devices could get a bump in performance because of a discovery at the Department of Energy's Oak Ridge National Laboratory that establishes new boundaries ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.