Water splitting: Ultrahigh resolution data reveals reaction mechanisms

Water splitting: Ultrahigh resolution data reveals reaction mechanisms
Overall structure of photosystem II.

Oxygenic photosynthetic organisms utilize energy from the sun to split water into protons, electrons and oxygen—products vital to life on earth. The process takes place through light-induced electron transfer reactions in a membrane protein complex photosystem II, but so far the resolution of structural studies on the protein complex has been too limited to ascertain the mechanism of these reactions in detail.

Now Jian-Ren Shen at Okayama University in collaboration with researchers at Osaka City University in Japan has solved the structure of the photosystem II complex at an unprecedented resolution. They improved the quality of the photosystem II crystals significantly, and obtained X-ray with a resolution of 1.9 Å.

Water splitting: Ultrahigh resolution data reveals reaction mechanisms
Structure of the chair-shaped oxygen-evolving complex.

Their studies revealed the detailed structures of and a number of cofactors involved in light absorption, energy transfer, and electron transfer reactions in this protein complex. The most significant finding of their work is elucidation of the detailed structure of the Mn4CaO5 cluster, which catalyses the light-induced water-splitting reaction. The cluster is shaped like a distorted chair and the distances between atoms in the structure provide insights into the role of oxygen and nearby water molecules in dioxygen formation. As they pointed out, "This provides a basis for unravelling the mechanism of water splitting and O–O bond formation, one of nature's most fascinating and important reactions." Their studies are considered extremely helpful for that aims to derive clean energy from the sun light efficiently, which may provide an ultimate solution for the energy and environmental problems that we face.

More information: Yasufumi Umena, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55-61 (2011). DOI: 10.1038/nature09913

Journal information: Nature

Provided by Okayama University

Citation: Water splitting: Ultrahigh resolution data reveals reaction mechanisms (2012, September 21) retrieved 19 April 2024 from https://phys.org/news/2012-09-ultrahigh-resolution-reveals-reaction-mechanisms.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Scientists unlock some key secrets of photosynthesis

0 shares

Feedback to editors