Students painlessly measure knee joint fluids in annual Sandia contest

Sep 26, 2012
Texas Tech proposes to create a micro-rheometer to measure very thin quantities of liquid, like that found in knee joints. Credit: Texas Tech University

Texas Tech University repeated last year's victory in the novel design category of Sandia National Laboratories' annual competition to design new, extraordinarily tiny devices, while Carnegie Mellon University won the educational microelectromechanical (MEMS) prize for the second year in a row.

This year's contest attracted engineering students from nine universities, nearly double the number of competitors in 2011. The increase was due in part to participation by Mexican universities.

The student designs are blueprints to build mechanical devices in the micrometer size range, to be powered by tiny amounts of electricity.

are omnipresent in modern society. They help and laser disk players to function, probe , enable high-tech machinery, route telecommunications and much more. New uses for the devices—inexpensive to construct and to operate—continue to be discovered. Some devices are smaller than the thickness of a human hair (about 70 micrometers).

Texas Tech students, who last year won with an ingenious, dust-sized dragonfly with surveillance possibilities, this year designed a micro- device able to measure the behavior of very thin quantities of liquid, like the synovial fluid in . The method requires much smaller samples compared to macro-scale rheometers, the standard tool.

"It is much easier, and usually less painful, to obtain small quantities of bodily fluids from patients," the students wrote in their project description. The project used an advanced design process called SUMMiT V, created and supported by Sandia, that enables the joining of five layers of silicon to form a complicated device.

Carnegie Mellon students, who last year designed a highly sensitive microvalve for more control over very small fluid flows, this year made use of the relatively large change in mass that occurs when a adsorbs even a small amount of material. The increase significantly alters any vibrational frequencies of the system. Characterizing adsorbed material this way can say a lot very quickly about what surface changes might occur in the structure under observation. For example, water vapor on MEMS devices may reduce the fatigue strength of polysilicon MEMS, while hydrocarbons adsorb onto microrelay contacts, increasing their electrical resistance.

The MEMS University Alliance, which now has more than 20 members, is part of Sandia's outreach to universities to improve engineering education. It is open to any U.S. institution of higher learning and select Mexican universities.

Carnegie Mellon students, who last year designed a highly sensitive microvalve for more control over very small fluid flows, this year made use of the relatively large change in mass that occurs when a microdevice adsorbs even a small amount of material. Credit: Carnegie Mellon University

The alliance provides classroom teaching materials and licenses for Sandia's special SUMMiT V design tools at a reasonable cost, so universities that lack fabrication facilities can develop a curriculum in MEMS.

Sandia executives, led by Steve Rottler, chief technology officer and vice president of Science and Technology and Research Foundations, and Microsystems director Gil Herrera helped encourage Mexican universities' participation in the contest, University Alliance Design Competition, by traveling to Mexico to sign memorandums of understanding to promote MEMS science and technology there.

Competing schools this year included the Air Force Institute of Technology, Arizona State University, Central New Mexico Community College, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional of Mexico City, Carnegie Mellon University, Southwestern Indian Polytechnic Institute, Texas Tech University, Universidad de Autonoma de Ciudad Juarez, Universidad de Guadalajara, Universidad de Guanajuato, University of Oklahoma, University of Utah and Universidad Veracruzana.

"The Mexican universities were highly competitive with the U.S. universities," said Keith Ortiz, Sandia manager of MEMS Technologies, who along with Gil Herrera hosted the student presentations. "We were impressed by their creativity and use of technology." 

The contest process takes nine months. It starts with students developing ideas for a device, followed by creation of an accurate computer model of a design that might work, analysis of the design and, finally, design submission. Sandia's MEMS experts and university professors review the design and determine the winners.

Sandia's state-of-the-art Microsystems and Engineering Sciences Applications (MESA) fabrication facility then creates parts for each of the entrants. The competition capitalizes on Sandia's confidence in achieving first-pass fabrication success, which restricts the entire process to a reasonable student time-frame.

Fabricated parts are shipped back to the university students for lengthy tests to determine whether the final product matches the purpose of the original computer simulation.

The University Alliance coordinates with the Sandia-led National Institute for Nano Engineering (NINE), providing additional opportunities for students to self-direct their engineering education, and the Sandia/Los Alamos Center for Integrated Nanotechnologies (CINT), a Department of Energy Office of Science center with the most up-to-date nanotechnology tools.

Explore further: Student designs and develops revolutionary new hand-held laminating tool

add to favorites email to friend print save as pdf

Related Stories

Texas Tech wins Sandia MEMS design contest

Jun 01, 2005

Students from Texas Tech University’s Electrical and Computer Engineering Department have won this year’s annual MEMS (micro-electromechanical system) design competition sponsored by Sandia National ...

Texas Tech, U of Utah win Sandia microdevice competition

Jun 15, 2010

The world's smallest chess board — about the diameter of four human hairs — and a pea-sized microbarbershop were winners in this year's design contest for, respectively, novel and educational microelectromechanical ...

New micro gyro technology for DARPA to be developed

May 24, 2011

The Georgia Institute of Technology, in partnership with Northrop Grumman Corporation, has been selected to develop a new type of Microelectromechanical Systems (MEMS) gyroscope technology for the Defense Advanced Research ...

Three new standards for MEMS devices

Jul 16, 2004

Researchers at the National Institute of Standards and Technology (NIST), along with their colleagues at several companies, are completing experiments that validate new standards aimed at improving emerging new microelectromechanical ...

Recommended for you

EDAG car with textile skin set for Geneva show

2 hours ago

Making its debut at the Geneva Motor Show 2015 is the EDAG Light Cocoon. This is promoted as a new dimension for lightweight construction, a sportscar with a textile outer skin panel. The EDAG Light Cocoon ...

Stanford aims to bring player pianos back to life

16 hours ago

(AP)—Stanford University wants to unlock the secrets of the player piano, which brought recorded music into living rooms long before there were cassettes, compact discs or iPods.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.