Researchers use SSRL to decipher structural details of deadly enzyme

Sep 20, 2012 by Lori Ann White
An enzyme used by many deadly bacteria at work creating a nucleotide called dUMP. Credit: Proceedings of the National Academy of Sciences

(Phys.org)—A small team of researchers has used the brilliant X-rays of the Stanford Synchrotron Radiation Laboratory to pin down the crystalline structure of an enzyme complex that scientists had spent nearly a decade trying to resolve. Their discovery could lead to anti-microbial agents for a host of deadly bacteria, including anthrax, tuberculosis, leprosy and diphtheria.

These bacteria use the enzyme, called flavin-dependent thymidylate synthase (FDTS), to synthesize a nucleotide they need to produce DNA. Other organisms, including humans, rely on a different version of the enzyme to accomplish this vital process; and the two versions of the enzyme differ significantly enough that targeting the bacterial form via drug therapies should not interfere with the human enzyme's work.

In other words, there's a low probability that drugs targeting the bacterial version of the enzyme will cause side effects in people.

According to SSRL Staff Scientist Irimpan Mathews, a corresponding author of the study published online last week by the , the difficulty in solving the enzyme's structure lay in crystallizing a version of the enzyme that could show them precisely what part of it a drug would need to target.

The target researchers had been trying to isolate is the site where FDTS binds with a compound called methylenetetrahydrofolate during nucleotide synthesis. "No one could get a structure of FDTS bound with that or with similar compounds," Mathews said. This was akin to knowing what door researchers wanted to create a key for, but not being able to find the lock.

Advances in for analysis, coupled with X-rays from SSRL beamlines 9-2 and 12-2, have given them the lock. "Our work represents the first structures of FDTS with methylenetetrahydrofolate and its mimics," Mathews said.

Mathews sees in the discovery a novel avenue for designing drugs that inhibit a wide variety of . "Many of the microbes that use FTDS are deadly, and some of them are biological warfare agents," he said. Many on the list also cause the opportunistic infections that often strike suffers of autoimmune diseases. "If we can make a good inhibitor for the FDTS enzyme, it could in principle kill more than 20 different microbes," he said.

Explore further: Chemical biologists find new halogenation enzyme

Related Stories

Structural study of anthrax yields new antibiotic target

Jan 28, 2008

Researchers studying anthrax knew they were onto something when they discovered an opponent the bacterium couldn’t outwit. Probing a bit deeper, they discovered this was because the attacker was interacting ...

Cancer drug target is promising lead for new TB treatments

Nov 17, 2010

A key enzyme in Mycobacterium tuberculosis that enables the microbe to reproduce rapidly could be a golden target for new drugs against tuberculosis (TB), according to a study published in Microbiology on 17 November. ...

No more free rides for 'piggy-backing' viruses

Jan 04, 2012

Scientists have determined the structure of the enzyme endomannosidase, significantly advancing our understanding of how a group of devastating human viruses including HIV and Hepatitis C hijack human enzymes to reproduce ...

Recommended for you

Chemical biologists find new halogenation enzyme

15 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

20 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

20 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

22 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0