Study examines how to control spatial distribution of cells in microenvironments

Sep 29, 2012 by Halil Tekin
'MIT is equal to infinite' pattern was made of various spatially organized cell types in defined geometries. 'MIT' and 'equal' patterns were made of spatially distributed human hepatoblastoma cells and NIH-3T3 fibroblasts. The infinite pattern was combination of one circular and one square pattern which were made of spatially arranged human hepatoblastoma cells and human umbilical vein endothelial cells. Image credit: Halil Tekin

Living systems are made of complex architectural organization of various cell types in defined microenvironments. The intricate interactions between different cell types control the specific functions of the associated tissues, such as the functions of native liver and cardiac tissues, metastasis and invasion of tumors, and embryonic development.

Replicating these complex associations could be useful for fabricating healthy tissues for regenerative medicine; diseased tissues, such as tumors, for drug discovery; models to study ; and models to study morphogenesis. However, it has remained a challenge to control the targeted spatial organization of multiple cell types in defined microenvironments by using previous methods.

MIT researchers have developed a new versatile technique to control of multiple cell types in predefined 3-D geometries which was described in a paper published online Sept. 3 in . They fabricated dynamic microstructures from a thermoresponsive polymer. These microstructures responded to temperature by changing their shape. MIT researchers exploited the temperature dependent shape changing characteristic of dynamic microstructures to seed different cell types at different temperatures. Spatial organization of multiple cell types was obtained in square and circular geometries.

Halil Tekin, the leading author of the paper, is a graduate student in electrical engineering and computer science at MIT. MIT undergraduate students Jefferson Sanchez '13, Christian Landeros '14 and Karen Dubbin '12 are other authors of the paper. Senior authors of the paper are Ali Khademhosseini, associate professor in the Harvard-MIT Health Sciences and Technology; and Robert Langer, the David H. Koch Institute professor at MIT. Undergraduate students Tonia Tsinman '13 and Brianna Jones '14 also have contributed to the research during the early development of dynamic microstructures.

Different geometries can be obtained by using molds with different shapes. One could use these dynamic microstructures to replicate a microscale lobule of a human liver or microscale human cardiac tissues by using the associated cell types. These biomimetic tissues could be highly useful to test drug candidates without requiring the animal experiments which take more time and investment. Tissues mimicking the native tissues could also be implanted to human body.

Another application could be to recapitulate the tumor microenvironments. Various cell types associated with particular tumors could be spatially organized by using dynamic microstructures. The tumor models mimicking the native ones can be highly beneficial for . The intricate interactions between various cell types regulating cell-signaling circuitry in a tumor microenvironment can be investigated by employing the dynamic microstructures.

MIT researchers also propose that these dynamic microstructures may potentially be useful to study embryonic development. Previous methods lacked mimicking dynamically changing geometry of embryo and controlling the spatial distribution of various cell types. The underlying mechanisms of early developmental stages could be studied by patterning associated in various geometries. In the future, it would also be possible to fabricate changing their shapes by sensing the secreted proteins from the cells, which could be employed to replicate the embryonic development.

Explore further: For cells, internal stress leads to unique shapes

Related Stories

Mimicking biological complexity, in a tiny particle

Aug 16, 2011

Tiny particles made of polymers hold great promise for targeted delivery of drugs and as structural scaffolds for building artificial tissues. However, current production methods for such microparticles yield ...

MIT method allows 3-D study of cells

Apr 24, 2006

MIT bioengineers have devised a new technique that makes it possible to learn more about how cells are organized in tissues and potentially even to regrow cells for repairing areas of the body damaged by disease, ...

Model may offer better understanding of embryonic development

Mar 09, 2010

A mathematical model developed at Purdue University can predict complex signaling patterns that could help scientists determine how stem cells in an embryo later become specific tissues, knowledge that could be used to understand ...

Recommended for you

For cells, internal stress leads to unique shapes

5 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

8 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...