Managing soil copper in crops irrigated with cattle footbath wastewater

Sep 24, 2012

Getting a head start on stopping soil copper buildup will now be a bit easier, thanks to studies by U.S. Department of Agriculture (USDA) scientists. This research could help Pacific Northwest farmers develop long-term irrigation management strategies to protect crops from potentially dangerous soil copper levels.

Scientists with USDA's Agricultural Research Service (ARS) conducted a laboratory investigation to assess how copper levels in wastewater used for irrigation affected crop performance and microbial activities. ARS is USDA's chief intramural scientific research agency, and this work supports the USDA priority of promoting international food security.

The research was carried out by soil scientists Jim Ippolito and David Tarkalson and microbiologist Tom Ducey. Ippolito and Tarkalson work in the ARS Northwest Irrigation and Soils Research Laboratory in Kimberly, Idaho, and Ducey works at the ARS Coastal Plains Soil, Water and Plant Research Center in Florence, S.C.

Copper sulfate baths are used to prevent foot infections in , and the discarded foot bath is often recycled to irrigate corn and alfalfa crops. The scientists surveyed alfalfa growth and development in soils containing different levels of total copper. Copper sulfate at soil levels of up to 250 parts per million (ppm) had no effect on alfalfa growth, but alfalfa growth stopped when soil copper sulfate levels exceeded 500 ppm.

The team also discovered that beneficial soil bacterial activity declined when test soils accumulated available soil copper levels above 50 ppm. Further analysis indicated that soil levels above 63 ppm of plant-available copper resulted in alfalfa copper concentrations that could potentially harm grazing livestock, according to National Research Council guidelines.

Ippolito notes that in real-world conditions, soil copper accumulations and impacts will vary, depending on a range of factors. In addition, negative impacts might not be observed for anywhere from 15 to 75 years after irrigation begins.

Explore further: Water police on patrol in drought-scarred Los Angeles

More information: Read more about this research in the September 2012 issue of Agricultural Research magazine. www.ars.usda.gov/is/AR/archive/sep12/cows0912.htm

add to favorites email to friend print save as pdf

Related Stories

Using biochar to boost soil moisture

Nov 08, 2011

Scientists at the U.S. Department of Agriculture (USDA) are leading the way in learning more about "biochar," the charred biomass created from wood, other plant material, and manure.

Fingerprinting fugitive dust

Jul 21, 2011

Each community of soil microbes has a unique fingerprint that can potentially be used to track soil back to its source, right down to whether it came from dust from a rural road or from a farm field, according to a U.S. Department ...

Calibrating corn production in potato country

Aug 15, 2011

Scientists at the U.S. Department of Agriculture (USDA) are studying soil moisture levels and other field dynamics to help Pacific Northwest famers maximize the production of corn, a relatively new regional crop that helps ...

Recommended for you

Water police on patrol in drought-scarred Los Angeles

28 minutes ago

Los Angeles isn't the world's wettest city at the best of times. But a record drought has triggered extra measures—now including "water police" checking on over-zealous sprinkler users and the like.

Shell files new plan to drill in Arctic

Aug 29, 2014

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Reducing water scarcity possible by 2050

Aug 29, 2014

Water scarcity is not a problem just for the developing world. In California, legislators are currently proposing a $7.5 billion emergency water plan to their voters; and U.S. federal officials last year ...

User comments : 0