The 'slippery slope to slime': Overgrown algae causing coral reef declines

Sep 19, 2012
This coral reef is healthy and unaffected by large amounts of algae. Credit: Oregon State University

(Phys.org)—Researchers at Oregon State University for the first time have confirmed some of the mechanisms by which overfishing and nitrate pollution can help destroy coral reefs – it appears they allow an overgrowth of algae that can bring with it unwanted pathogens, choke off oxygen and disrupt helpful bacteria.

These "macroalgae," or large , are big enough to essentially smother corals. They can get out of control when sewage increases nitrate levels, feeds the , and some of the large fish that are most effective at reducing the algal buildup are removed by fishing.

Scientists found that macroalgal competition decreased rates by about 37 percent and had other detrimental effects. Other research has documented some persistent states of hypoxia.

Researchers call this process "the slippery slope to slime."

Findings on the research were just published in , a professional journal. The work was supported by the National Science Foundation.

"There is evidence that coral reefs around the world are becoming more and more dominated by algae," said Rebecca Vega-Thurber, an OSU assistant professor of microbiology. "Some reefs are literally covered up in green slime, and we wanted to determine more precisely how this can affect coral health."

The new study found that higher levels of algae cause both a decrease in coral growth rate and an altered bacterial community. The algae can introduce some detrimental pathogens to the coral and at the same time reduce levels of . The useful bacteria are needed to feed the corals in a , and also produce antibiotics that can help protect the corals from other pathogens.

One algae in particular, Sargassum, was found to vector, or introduce a microbe to corals, a direct mechanism that might allow introduction of foreign pathogens.

There are thousands of species of algae, and coral reefs have evolved with them in a relationship that often benefits the entire tropical marine ecosystem. When in balance, some algae grow on the reefs, providing food to both small and large fish that nibble at the algal growth. But the algal growth is normally limited by the availability of certain nutrients, especially nitrogen and phosphorus, and some large fish such as parrot fish help eat substantial amounts of algae and keep it under control.

All of those processes can be disrupted when algal growth is significantly increased by the nutrients and pollution from coastal waste water, and overfishing reduces algae consumption at the same time.

"This shows that some human actions, such as terrestrial pollution or overfishing, can affect everything in marine ecosystems right down to the microbes found on corals," Vega-Thurber said. "We've suspected before that increased algal growth can bring new diseases to corals, and now for the first time have demonstrated in experiments these shifts in microbial communities."

Some mitigation of the problem is already being done on high-value by mechanically removing algae, Vega-Thurber said, but the best long-term solution is to reduce pollution and so that a natural balance can restore itself.

Corals are one of Earth's oldest animal life forms, evolving around 500 million years ago. They host thousands of species of fish and other animals, are a major component of marine biodiversity in the tropics, and are now in decline around the world. Reefs in the Caribbean Sea have declined more than 80 percent in recent decades.

Explore further: Increase in reported flooding a result of higher exposure

More information: Vega Thurber R, Burkepile DE, Correa AMS, Thurber AR, Shantz AA, et al. (2012) Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides. PLoS ONE 7(9): e44246. doi:10.1371/journal.pone.0044246

Related Stories

Viruses linked to algae that control coral health

Jul 12, 2012

Scientists have discovered two viruses that appear to infect the single-celled microalgae that reside in corals and are important for coral growth and health, and they say the viruses could play a role in ...

Coral Death Results from Bacteria Fed by Algae

Jun 12, 2006

Bacteria and algae are combining to kill coral –– and human activities are compounding the problem. Scientists have discovered an indirect microbial mechanism whereby bacteria kill coral with the help of ...

Coral reef study traces indirect effects of overfishing

Feb 27, 2012

A study of the tropical coral reef system along the coastline of Kenya has found dramatic effects of overfishing that could threaten the long-term health of the reefs. Led by scientists at the University of California, Santa ...

Recommended for you

NASA image: Signs of deforestation in Brazil

2 hours ago

Multiple fires are visible in in this image of the Para and Mato Grosso states of Brazil. Many of these were most likely intentionally set in order to deforest the land. Deforestation is the removal of a ...

Sunblock poses potential hazard to sea life

3 hours ago

The sweet and salty aroma of sunscreen and seawater signals a relaxing trip to the shore. But scientists are now reporting that the idyllic beach vacation comes with an environmental hitch. When certain sunblock ...

Is falling recycling rate due to 'green fatigue'?

3 hours ago

It's been suggested that a recent fall in recycling rates is due to green fatigue, caused by the confusing number of recycling bins presented to householders for different materials. Recycling rates woul ...

Study to inform Maryland decision on "fracking"

6 hours ago

The Maryland Department of Environment and Department of Health and Mental Hygiene released on August 18, 2014, a report by the University of Maryland School of Public Health, which assesses the potential ...

User comments : 0