New study shows promise in using RNA nanotechnology to treat cancers and viral infections

Sep 04, 2012
The University of Kentucky's Peixuan Guo is considered one of the top three nanobiotechnology experts in the world. Credit: UK HealthCare

A new study by University of Kentucky researchers shows promise for developing ultrastable RNA nanoparticles that may help treat cancer and viral infections by regulating cell function and binding to cancers without harming surrounding tissue.

The study, published in Nano Today, was carried out in the laboratory of Peixuan Guo, the William S. Farish Endowed Chair in Nanobiotechnology at the UK Markey Cancer Center, in collaboration with Dr. Mark Evers, director of the UK Markey Cancer Center.

The study uses RNA (ribonucleic acid) as a building block for the bottom-up fabrication of nanostructures. Using the RNA nanotechnology pioneered by Guo, the researchers constructed ultrastable X-shaped RNA using re-engineered RNA fragments to carry up to four therapeutic and diagnostic modules. Their RNA nanoparticles can include for silencing genes, micro-RNA for regulating gene expression, aptamer for targeting , or a that can catalyze chemical reactions.

The study demonstrated that regulation of progressively increased with the increasing number of functional modules in the nanoparticle.

"RNA nanotechnology is an emerging field, but the instability and degradation of RNA nanoparticles have made many scientists flinch away from the research in RNA nanotechnology," Guo said. "We have addressed these issues, and now it is possible to produce RNA nanoparticles that are highly stable both chemically and thermodynamically in the test tube or in the body with great potential as therapeutic reagents."

The RNA nanoparticles displayed several favorable attributes: polyvalent nature, which allows simultaneous delivery of multiple for achieving synergistic effects; modular design, which enables controlled self-assembly with defined structure; thermodynamically stable, which keeps the RNA nanoparticles intact in animal and human circulation systems, where they exist at very low concentrations; and chemically stable, which makes the nanoparticles resistant to RNase (an enzyme, which cleaves RNA) digestion in the blood serum.

"A major problem with cancer treatments is the ability to more directly and specifically deliver anti-cancer drugs to cancer metastases," Evers said. "Using the nanotechnology approach that Peixuan Guo and his group have devised may allow us to more effectively treat cancer metastasis with fewer side effects compared to current chemotherapy."

Explore further: Intricate algae produce low-cost biosensors

Related Stories

Team finds stable RNA nano-scaffold within virus core

Sep 12, 2011

With the discovery of a RNA nano-scaffold that remains unusually stable in the body, researchers at the University of Cincinnati (UC) have overcome another barrier to the development of therapeutic RNA nanotechnology.

Modified RNA creates stable therapeutic nanoparticles

Feb 23, 2011

For years, RNA has seemed an elusive tool in nanotechnology research. While easily manipulated in the laboratory, RNA is susceptible to quick destruction in the body when confronted with a commonly found enzyme. "The enzyme ...

Purdue scientists treat cancer with RNA nanotechnology

Sep 14, 2005

Using strands of genetic material, Purdue University scientists have constructed tiny delivery vehicles that can carry anticancer therapeutic agents directly to infected cells, offering a potential wealth of ...

Recommended for you

Nano-forests to reveal secrets of cells

1 hour ago

Vertical nanowires could be used for detailed studies of what happens on the surface of cells. The findings are important for pharmaceuticals research, among other applications. A group of researchers from ...

Intricate algae produce low-cost biosensors

Sep 01, 2014

(Phys.org) —Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting miniscule amounts of protein or other biomarkers.

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

User comments : 0