Reversible oxygen-sensing 'switching' mechanism discovered

Sep 10, 2012

Bacteria that cause disease in humans have a 'reversible switching mechanism' that allows them to adapt to environments lacking oxygen, scientists at the University of East Anglia (UEA) have found.

Published today in the journal , the findings provide a new insight into how bacteria sense and adapt to oxygenated atmospheres, and uncover a new 'antioxidant' pathway by which certain types of damaged proteins can be repaired.

The research focussed on the fumarate and nitrate reduction (FNR), which senses the presence of oxygen in the environment and 'switches' off and on specific genes in pathogens such as E. coli when there is no oxygen present – conditions often found in the human intestinal tract.

It was conducted by researchers at UEA, the University of Georgia and the University of Sheffield

Oxygen is sensed by FNR through a special cofactor – called an iron-sulfur cluster – that undergoes conversion from one form to another, smaller one, thereby causing the protein to change shape (the 'switch') and leading to the turning off of genes associated with growth without oxygen.

Joint lead author Prof Nick Le Brun, from UEA's School of Chemistry, said: "This study has revealed important new details of FNR's switching mechanism, demonstrating that the cluster conversion can go in reverse, so that the switch is a reversible one.

"This also highlights a new general mechanism by which this type of protein can be repaired if it gets damaged – which can often happen, as iron-sulfur clusters are highly reactive towards oxygen and other species that are associated with oxidative stress, which is linked to a whole host of diseases, as well as ageing."

The findings could have a number of implications for the developments of and the study of iron-sulfur cluster proteins, which are found in all types of cells where they play crucial roles in many processes including respiration, and DNA repair.

The clusters can also be damaged by oxidative stress – conditions that cause damage to cellular components that lead to the activation of specific defence responses – which is thought to be involved in the development of many diseases including cancer, Parkinson's and Alzheimer's.

Explore further: Blocking a fork in the road to DNA replication

More information: 'Reversible cycling between partially cysteine persulfide-ligated clusters and cysteine-ligated clusters in FNR' is published today by Proceedings of the National Academy of Sciences. www.pnas.org/content/early/201… /1208787109.abstract

Related Stories

Oxygen 'sensor' may shut down DNA transcription

Jun 19, 2012

(Phys.org) -- A key component found in an ancient anaerobic microorganism may serve as a sensor to detect potentially fatal oxygen, a University of Arkansas researcher and his colleagues have found. This helps ...

Oxidative DNA damage repair

Dec 27, 2011

Oxidative stress damages DNA. Researchers in the Vetsuisse Faculty have now decoded the mechanism that repairs DNA damaged in this way. This repair mechanism could lead to less invasive approaches in cancer therapy and contribute ...

New DNA repair pathway

Nov 08, 2010

(PhysOrg.com) -- UC Davis researchers have found a new pathway for repairing DNA damaged by oxygen radicals. The results are published this week in the journal Proceedings of the National Academy of Sciences.

High iron, copper levels block brain-cell DNA repair

May 20, 2011

No one knows the cause of most cases of Alzheimer's, Parkinson's and other neurodegenerative disorders. But researchers have found that certain factors are consistently associated with these debilitating conditions. One is ...

Recommended for you

Researchers capture picture of microRNA in action

19 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

21 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.