Study reveals complex process behind sea sponge's toxicity

Sep 17, 2012
Study reveals complex process behind sea sponge's toxicity

(Phys.org)—The solution to a biochemical puzzle over the molecular make-up of a coral reef sea sponge (Theonella swinhoei) has revealed the origin of its extremely toxic agents.

A team of , including academics at The University of Nottingham, have discovered that polytheonamides— highly toxic and chemically complex compounds which are key to the sponge's defences—are produced by the organism in disguise.

And in a final twist they found that the polytheonamides are not even made by the sponge itself but by a bacterium living with it in symbiosis.

Their discoveries, published on the website last week, could have implications for human medicine too—the highly effective nature of the sponge's toxins, and their means of production, could be the starting point for and anti-cancer therapies.

Polytheonamides belong to a class of molecules known as peptides, which are polymers built from amino acid units. Peptides and proteins are normally made by the ribosome, a molecular machine which translates the genetic code, originating from DNA, into the amino acid code required to assemble proteins.

The ribosome uses only 22 in its 'vocabulary' and because polytheonamides contain many other unusual amino acids they have previously been classified as non-ribosomal peptides, which are made by enzymes like the vast majority of natural products and not read directly from the genetic code.

The international team, which also included scientists from Bonn and Tokyo, has demonstrated that, despite their highly unusual amino acid content, the polytheonamides are in fact ribosomal products in disguise which have undergone an unprecedented degree of modification in their early formation.

The experts believe that toxicity lies at the heart of this baffling but ingenious piece of bioengineering. The modifications change the of the peptide into a helix that can insert into a cell membrane to make an ion channel which disrupts the membrane's electrical potential and kills the cell.

Dr Neil Oldham, of The University of Nottingham's School of Chemistry, said: "Understanding how these molecules are produced has been a real challenge: they are almost unrecognisable as products of the ribosome."

 "Cell kill activity is the starting point for many anti-cancer and antibiotic strategies. Having direct control over the structure of these molecules may allow modulation of activity through 'designed biosynthesis' potentially leading to future therapies centred on the more effective targeting of cancerous cells or microorganisms."

The scientists believe that they now know all the enzymes needed to produce polytheonamide from its unmodified post-ribosomal state. 

Explore further: New insights in survival strategies of bacteria

Related Stories

'Fishy' clue helps establish how proteins evolve

Jan 27, 2009

(PhysOrg.com) -- Three billion years ago, a "new" amino acid was added to the alphabet of 20 that commonly make up proteins in organisms today. Now researchers at Yale and the University of Tokyo have demonstrated ...

Biologists probe the machinery of cellular protein factories

Sep 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Biologists uncover a novel cellular proofreading mechanism

Nov 11, 2011

(PhysOrg.com) -- To make proteins, cells assemble long chains of amino acids, based on genetic instructions from DNA. That construction takes place in a tiny cellular structure called a ribosome, to which amino acids are ...

Recommended for you

New insights in survival strategies of bacteria

17 hours ago

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Team makes scientific history with new cellular connection

Sep 11, 2014

Researchers led by Dr. Helen McNeill at the Lunenfeld-Tanenbaum Research Institute have revealed an exciting and unusual biochemical connection. Their discovery has implications for diseases linked to mitochondria, ...

Researchers discover new producer of crucial vitamin

Sep 11, 2014

(Phys.org) —New research has determined that a single group of micro-organisms may be responsible for much of the world's vitamin B12 production in the oceans, with implications for the global carbon cycle and climate change.

How bacteria battle fluoride

Sep 11, 2014

He's not a dentist, but Christopher Miller is focused on fluoride. Two studies from his Brandeis University lab provide new insights into the mechanisms that allow bacteria to resist fluoride toxicity, information ...

User comments : 0