Experiments may reveal new state of matter for the 'glue particles', the gluons

Sep 17, 2012
Experiments may reveal new state of matter for the 'glue particles', the gluons
Collisions between protons and lead nuclei were established for the first time in the ALICE detector. Such collisions will enable scientists to investigate new aspects of the structure of nuclear particles.

(Phys.org)—At the LHC accelerator at CERN, collisions between protons and lead nuclei were established last week, for the first time in the ALICE detector.

"These first tests exceeded all expectations. The performance of the LHC and the ALICE detector is remarkable. Collisions were established in record time and we collected the first collision data during the night, says Professor Jens Jørgen Gaardhøje, at the Niels Bohr Institute, University of Copenhagen and adds that the data now will be analyzed at full speed.

Collisions between and lead will enable scientists to investigate new aspects of the structure of nuclear particles. "It is of very significant interest to study asymmetric collisions between large nuclei and the much smaller protons", says Jens Jørgen Gaardhøje and explains, that when the protons hit a lead nucleus it 'drills' a hole through the lead nucleus and leaves it relatively unscathed. As the proton cuts through the lead nuclei, the gluons inside the proton and the lead nucleus will collide and produce particles that can be measured in the Alice detector. In this way one can investigate the properties of nuclear matter, without heating it too much, as is done in lead-lead collisions. 

It is the gluons, which are the bearers of the strong nuclear force, that the researchers are interested in studying. Gluons have the special property that they can interact with each other. This means that gluons may split into several gluons of lesser energy. If this splitting were to continue indefinitely, the nuclear particles would be filled with an of gluons of infinitely and momentum, Jens Jørgen Gaardhøje explains and says that this is untenable. Fortunately, through the same mechanism gluons may also recombine and fuse together. It is therefore reasonable to assume that a status quo is established, resulting in a universal saturation density of . The resulting has been dubbed the Color Glass Condensate (CGC).

The existence of CGC has not so far been unambiguously demonstrated, but the research group, HEHI at Niels Bohr Institute measured already in 2005 indications that the CGC might be realized. If the CGC exists, it may be an entirely new manifestation of Bose-Einstein Condensates (a situation in which the particles collect in the lowest energy states), in this case governed by the strong interaction.

"This nights successful test run at with the is a preparation for the full experimental program scheduled to take place in January-February of 2013. This initial run was so successful, however, that it may already be able to give indications on whether the CGC exists in nature. This state will be very interesting to study and give us new opportunities to understand the properties of saturated gluon matter ", says Jens Jørgen Gaardhøje.

The research group, HEHI group atthe Niels Bohr Institute has built a special detector, the Forward Multiplicity Detector (FMD), covering a large kinematical range, that will prove crucial for the investigation of the Color Glass Condensate.

Explore further: Neutrino trident production may offer powerful probe of new physics

add to favorites email to friend print save as pdf

Related Stories

Quark matter's connection with the Higgs

Aug 27, 2012

(Phys.org)—You may think you've heard everything you need to know about the origin of mass. After all, scientists colliding protons at the Large Hadron Collider (LHC) in Europe recently presented stunning ...

eRHIC gets to the heart of the matter

Apr 26, 2006

At the U.S. Department of Energy's Brookhaven National Laboratory, scientists have proposed a new way of studying the structure of matter down to a level never before observed. Their proposal is the "eRHIC" ...

Recommended for you

And so they beat on, flagella against the cantilever

6 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

10 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

12 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1.3 / 5 (3) Sep 18, 2012
Experiments may reveal new state of matter for the 'glue particles', the gluons…
It is the gluons, which are the bearers of the strong nuclear force…

By the way, it is interesting to note that conventionally physicists still cannot explain how the gluon could act as the strong nuclear force which holds protons or neutrons together. Armed with this unconventional physical view could help to visualize how it works!
http://www.vacuum...=9〈=en
Torbjorn_Larsson_OM
not rated yet Sep 18, 2012
"unconventional" is of course another term for crackpot.

The well tested standard model (which is why inferior ideas are crackpot by now) predicts the residual strong force between nucleons as emergent on the strong force based on gluons.

"The contemporary strong force is described by quantum chromodynamics (QCD), a part of the standard model of particle physics." "The residual effect of the strong force is called the nuclear force. The nuclear force acts between hadrons, such as mesons or the nucleons in atomic nuclei." [ http://en.wikiped...eraction ]