Proteins barge in to turn off unneeded genes

Sep 06, 2012 by Bill Steele
A few Angstroms make all the difference. The CueR protein binds to DNA at the start of a gene that protects against copper poisoning. When copper atoms bind to CueR, the protein changes shape just enough to twist the DNA - such a small distance that it can't be drawn in two dimensions - to turn on transcription of the gene. When the gene is no longer needed, the original form of CueR unceremoniously kicks the copper-bound form away, turning off transcription quickly to save energy.

(—The sorcerer's apprentice started a water-carrying system, but couldn't stop it, and soon he was up to his neck in water, and trouble. Living cells have a better design: When they activate a gene, they have a system in reserve to turn it off. The cell does not want to waste energy making proteins it no longer needs. Cornell researchers have identified two mechanisms cells use and found they are designed to be quick.

Peng Chen, associate professor of chemistry and , and colleagues report the discovery in the online edition of the Proceedings of the National Academy of Sciences Sept. 4. "The generic is for the activator to fall off, then the repressor binds," Chen said. "What we have found is two pathways that are much more efficient."

The work was done in bacteria and could lead to new ways to kill , Chen said. It also represents a step forward in understanding regulation that could apply further up the evolutionary ladder.

The involved take place on the scale of single molecules, far too small to observe through a microscope. To monitor these processes, the researchers tagged proteins and sites with molecules that fluoresce and change their fluorescence intensity when they meet, so that a flash of light appears or changes when a takes place. The fluorescence change is triggered by a rearrangement of as the tagging molecules come together, beginning when they are near (a matter of nanometers) and becoming brighter as they close in. By tagging one end of a , the researchers can tell by the brightness of the signal which orientation the protein takes in binding to DNA.

The researchers worked with bacteria for which copper is toxic. These bacteria possess genes that code for a protein that grabs and shoves them out through the cell wall. Ordinarily a protein called CueR binds to the chromosome in front of the sites of these genes and distorts the DNA, preventing the gene from being transcribed. When copper atoms bind to CueR it changes its configuration, allowing enzymes to transcribe the genes to make the protective proteins.

When the copper threat is gone another form of CueR, circulating in solution in the cell, replaces the copper-modified form, turning off the gene. By watching and timing the reactions, the Cornell researchers determined that the turnoff protein either shoves the bound protein out of the way or "assists" it in detaching and then moves into the vacant space. These mechanisms are up to 70 times faster than waiting for the activator to go away on its own, the research showed. It is likely that bacteria use similar methods for turning off protection against other toxic metals, they said.

The study also showed that the CueR protein can bind to the DNA in two different orientations and can spontaneously flip between them without completely detaching. In one orientation it binds only at the specific gene it is supposed to control. In the other it attaches nonspecifically to DNA. The researchers suggest that this may make it easier for the protein to get to where it's needed quickly, by attaching to the DNA strand and sliding along until it finds the specific site, then flipping into working mode.

The research was supported primarily by the National Institutes of Health and partly by the National Science Foundation.

Explore further: In the 'slime jungle' height matters

Related Stories

Research Helps Uncover the Secrets of an Age-Old Killer

Dec 07, 2006

Scientists working in part at the Stanford Synchrotron Radiation Laboratory (SSRL) have discovered a gene for a protein that regulates the cellular response to copper in the bacterium that causes tuberculosis. ...

Gene-bender proteins may sway to DNA

Dec 04, 2006

Among the many genes packed into each cell of our body, those that get turned on, or expressed, are the ones that make us who we are. Certain proteins do the job of regulating gene expression by clasping onto key spots of ...

Just a little squeeze lets proteins assess DNA

Dec 16, 2008

( -- To find its target, all a protein needs to do is give quick squeezes as it moves along the DNA strand, suggests new research from The University of Arizona in Tucson.

A small cut with a big impact

May 02, 2012

Diseases and injuries trigger warning signals in our cells. As a result, genes are expressed and proteins produced, modified or degraded to adapt to the external danger and to protect the organism. In order to be able to ...

Recommended for you

In the 'slime jungle' height matters

30 minutes ago

( —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

22 hours ago

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

Cow manure harbors diverse new antibiotic resistance genes

Apr 22, 2014

Manure from dairy cows, which is commonly used as a farm soil fertilizer, contains a surprising number of newly identified antibiotic resistance genes from the cows' gut bacteria. The findings, reported in mBio the online ...

User comments : 0

More news stories

In the 'slime jungle' height matters

( —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

New alfalfa variety resists ravenous local pest

( —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

Former Iron Curtain still barrier for deer

The Iron Curtain was traced by an electrified barbed-wire fence that isolated the communist world from the West. It was an impenetrable Cold War barrier—and for some inhabitants of the Czech Republic it ...

Rainbow trout genome sequenced

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

Robot scouts rooms people can't enter

( —Firefighters, police officers and military personnel are often required to enter rooms with little information about what dangers might lie behind the door. A group of engineering students at ...