A new probe for spintronics

Sep 12, 2012
A new probe for spintronics
Conversion between currents of charge (Jc) and spin (Js) depends on the configurations of four magnetic moments at a time.

The spin Hall effect (SHE) enables us to create spin current in  non-magnetic materials without using ferromagnetic materials. It is a crucial element in the central idea behind spintronics, that of manipulating currents of spin instead of currents of charge. Since the first experimental report on the SHE in semiconductors in 2004, the phenomenon and its mechanism have been intensively studied to find out more efficient and economical methods of generation of the spin current, both in semiconductors and metals.

The inverse process of SHE (ISHE) is similarly recognized as a key step to be mastered in order to convert the spin current back into a charge current. So while both the SHE and its inverse are important for the potential applications, there are few examples of their use as an electrical detector of more of condensed matter.

In an article just released in Nature communications, scientists from the University of Tokyo, the Japanese Atomic Energy Authority and the ILL propose a new way to harness the ISHE as a probe of nonlinear spin fluctuations in the vicinity of the magnetic phase transition of a magnetic metal.

This work provides a new probe which has shown to be applicable to nanowires, with a sensitivity to a tiny magnetic moment orders of magnitude smaller than that which could be seen by a conventional SQUID magnetometer.

Explore further: And so they beat on, flagella against the cantilever

More information: Nature Comms., 11/09/2012  doi: 10.1038/ncomms2063 . http://www.nature.com/ncomms/journal/v3/n9/full/ncomms2063.html

add to favorites email to friend print save as pdf

Related Stories

A step forward for ultrafast spintronics

Sep 06, 2012

(Phys.org)—In spin based electronics the spin of the electron is used as a carrier of information. To meet the need for faster electronics, the speed must be increased as far as possible. Today, Uppsala physicists show ...

Team controls thermal fluctuations with spin current

Nov 17, 2011

(PhysOrg.com) -- A team of researchers from the NIST Center for Nanoscale Science and Technology, the University of Muenster, and West Virginia University have demonstrated control of magnetic thermal fluctuations ...

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Research reveals vital insight into spintronics

Jul 03, 2011

(PhysOrg.com) -- Progress in electronics has relied heavily on reducing the size of the transistor to create small, powerful computers. Now spintronics, hailed as the successor to the transistor, looks set ...

Recommended for you

And so they beat on, flagella against the cantilever

21 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0