A new probe for spintronics

Sep 12, 2012
A new probe for spintronics
Conversion between currents of charge (Jc) and spin (Js) depends on the configurations of four magnetic moments at a time.

The spin Hall effect (SHE) enables us to create spin current in  non-magnetic materials without using ferromagnetic materials. It is a crucial element in the central idea behind spintronics, that of manipulating currents of spin instead of currents of charge. Since the first experimental report on the SHE in semiconductors in 2004, the phenomenon and its mechanism have been intensively studied to find out more efficient and economical methods of generation of the spin current, both in semiconductors and metals.

The inverse process of SHE (ISHE) is similarly recognized as a key step to be mastered in order to convert the spin current back into a charge current. So while both the SHE and its inverse are important for the potential applications, there are few examples of their use as an electrical detector of more of condensed matter.

In an article just released in Nature communications, scientists from the University of Tokyo, the Japanese Atomic Energy Authority and the ILL propose a new way to harness the ISHE as a probe of nonlinear spin fluctuations in the vicinity of the magnetic phase transition of a magnetic metal.

This work provides a new probe which has shown to be applicable to nanowires, with a sensitivity to a tiny magnetic moment orders of magnitude smaller than that which could be seen by a conventional SQUID magnetometer.

Explore further: Finding faster-than-light particles by weighing them

More information: Nature Comms., 11/09/2012  doi: 10.1038/ncomms2063 . http://www.nature.com/ncomms/journal/v3/n9/full/ncomms2063.html

add to favorites email to friend print save as pdf

Related Stories

A step forward for ultrafast spintronics

Sep 06, 2012

(Phys.org)—In spin based electronics the spin of the electron is used as a carrier of information. To meet the need for faster electronics, the speed must be increased as far as possible. Today, Uppsala physicists show ...

Team controls thermal fluctuations with spin current

Nov 17, 2011

(PhysOrg.com) -- A team of researchers from the NIST Center for Nanoscale Science and Technology, the University of Muenster, and West Virginia University have demonstrated control of magnetic thermal fluctuations ...

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Research reveals vital insight into spintronics

Jul 03, 2011

(PhysOrg.com) -- Progress in electronics has relied heavily on reducing the size of the transistor to create small, powerful computers. Now spintronics, hailed as the successor to the transistor, looks set ...

Recommended for you

Finding faster-than-light particles by weighing them

17 hours ago

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.