Predicting wave power could double marine-based energy

Sep 10, 2012

In the search for alternative energy, scientists have focused on the sun and the wind. There is also tremendous potential in harnessing the power of the ocean's waves, but marine energy presents specific challenges that have made it a less promising resource.

It's a challenge to tune Wave (WECs) so that they are able to harvest the maximum from waves, which differ in terms of their size and force. This unpredictability leads to intermittent energy collection. WECs also need to withstand the harsh winds and storms to which they are subjected in the —storms which can destroy the devices.

Now, working with a team at the University of Exeter in the UK, Prof. George Weiss of Tel Aviv University's School of Electrical Engineering and Center for Renewable Energy has developed a that, when used in conjunction with previously-developed wave prediction technology, helps WECs calculate the correct amount of force needed to collect the maximum energy possible, allowing the device to respond to each wave individually. The system, which was recently published in the journal Renewable Energy, doubles the energy previously collected by WECs.

Calculating force

WECs, Prof. Weiss explains, have two parts—a fixed or weighted lower part, possibly attached to the ocean floor, and an upper section that moves up and down based on the motion of the water. The device collects energy generated by the resistance force between the parts. Unlike or solar panels, which collect as much or as little energy as comes their way, WECs need to adjust themselves to each oncoming wave to function properly, which requires knowledge of the characteristics of the incoming wave.

If there is between the two parts of the WEC, the upper part moves freely with the waves, and no electricity is generated, Prof. Weiss explains. On the other hand, where there is so much resistance that it suppresses movement, the device turns rigid. At both of these extremes, no energy is produced. The ideal is a happy medium based on measurements of the incoming wave.

Prof. Weiss and his fellow researchers developed a control algorithm that is responsible for setting the correct resistance force for the WEC based on the predicted wave information. A processor attached to the WEC runs the algorithm five times per second in order to determine and then implement an optimal mechanical response to the coming waves.

In the lab, the researchers have run simulations using wave data gathered from the ocean. Combining prediction technology with their new algorithm, energy collection was improved by 100 percent —double the amount of energy that WECs had collected previously.

One second warning

The most important piece of information is the height of the wave, says Prof. Weiss, which the WEC needs to know in advance in order to prepare. "You would think that the longer the WEC knows the wave height in advance, the better, but in a surprising finding, it turns out that a one-second prediction horizon is enough," he says, noting that a longer prediction time does not actually improve the energy harvest.

Their findings could not only help to improve the functioning of the WECs that are already in use in places such as the East Coast of the US and the Atlantic Coast of Spain, but could help the technology become more competitive. Currently, marine energy is fifty times more expensive to collect than the market price for the energy itself—as solar and wind energy were in their infancy, says Prof. Weiss. But with the improvement of WEC structure, performance, and mass production, it could become commercially viable. "There is a lot of untapped energy in the ocean," he adds.

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

Marine energy doubled by predicting wave power

Jun 26, 2012

The energy generated from our oceans could be doubled using new methods for predicting wave power. Research led by the University of Exeter, published (27 June) in the journal Renewable Energy, could pave t ...

Scientists put spotlight on marine power

Aug 23, 2012

A team of researchers from Israel and the United Kingdom has discovered that energy produced from the planet's oceans can increase twofold when novel methods for predicting wave power are used. Presented ...

Powering Australia with waves

Aug 17, 2010

Wave energy is surging ahead as a viable source of renewable energy to generate electricity -- with Australia's southern margin identified by the World Energy Council as one of the world's most promising sites for wave-energy ...

Recommended for you

Environmentally compatible organic solar cells

3 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

4 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

4 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

New US-Spanish firm says targets rich mobile ad market

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...