Physicists squeeze light on quantum scale

September 21, 2012

An international team of physicists has pushed the boundaries on ultra-precise measurement by harnessing quantum light waves in a new way.

It is one thing to be able to measure spectacularly small distances using "squeezed" light, but it is now possible to do this even while the target is moving around.

An Australian-Japanese made the breakthrough in an experiment conducted at the University of Tokyo, the results of which have been published in an article, "Quantum-enhanced tracking" in the prestigious journal, Science.

Leader of the international theoretical team Professor Howard Wiseman, from Griffith University's Centre for , said this more precise technique for motion tracking will have many applications in a world which is constantly seeking smaller, better and faster technology.

"At the heart of all scientific endeavour is the necessity to be able to measure things precisely," Professor Wiseman said.

"Because the of a light beam changes whenever it passes through or bounces off an object, being able to measure that change is a very powerful tool."

"By using squeezed light we have broken the standard limits for precision phase tracking, making a fundamental contribution to science," he said. "But we have also shown that too much squeezing can actually hurt."

Dr Dominic Berry from Macquarie University has been collaborating with Professor Wiseman on the theory of this problem for many years.

"The key to this experiment has been to combine "phase squeezing" of with feedback control to track a moving phase better than previously possible," Dr Berry said.

"Ultra-precise quantum-enhanced measurement has been done before, but only with very small phase changes. Now we have shown we can track large phase changes as well," he said.

Professor Elanor Huntington from UNSW Canberra, who directed the Australian experimental contribution, is a colleague of Professor Wiseman in the Centre for Quantum Computation and Communication Technology.

"By using quantum states of light we made a more precise measurement than is possible through the conventional techniques using laser beams of the same intensity," Professor Huntington said.

Curiously, we found that it is possible to have too much of a good thing. Squeezing beyond a certain point actually degrades the performance of the measurement making it less precise than if we had used with no squeezing."

Explore further: Physicists are first to 'squeeze' light to quantum limit

Related Stories

Physicists are first to 'squeeze' light to quantum limit

January 2, 2009

(PhysOrg.com) -- A team of University of Toronto physicists have demonstrated a new technique to squeeze light to the fundamental quantum limit, a finding that has potential applications for high-precision measurement, next-generation ...

Using quantum smoothing for optical phase estimation

March 11, 2010

(PhysOrg.com) -- "There are many situations where we need to measure the classical properties of a quantum system," Elanor Huntington tells PhysOrg.com. "Optical phase estimation is one of these techniques, and it is central ...

Squeezed light from single atoms

June 30, 2011

(PhysOrg.com) -- Max Planck Institute of Quantum Optics scientists generate amplitude-squeezed light fields using single atoms trapped inside optical cavities.

Quantum interference fine-tuned by Berry phase

July 5, 2012

(Phys.org) -- A team from the University of Bristol’s Centre for Quantum Photonics (CQP) has experimentally demonstrated how to use Berry’s phase to accurately control quantum interference between different photons.

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

A new study looks for the cortical conscious network

August 26, 2016

New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ForFreeMinds
1 / 5 (1) Sep 22, 2012
This article would have been better if it described exactly how precise the measurement made with this technique was.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.