Phagevet-P: Applying viruses to treat bacterial diseases

Sep 20, 2012
Phagevet-P: Applying viruses to treat bacterial diseases
Credit: Thinkstock

The quest for enhanced food safety has driven research into novel treatments for bacterial diseases in livestock. A European consortium proposed the use of bacteriophages (bacteria-targeting viruses) to treat salmonella in poultry.

New EU regulations wish to substitute the to treat animal diseases caused by salmonella and campylobacter. At the same time, food-borne pathogens are becoming resistant to antimicrobials used during animal production with the risk of passing through the food chain. As a result, alternative regimens to currently administered antibiotics are urgently required.

Bacteriophage therapy is emerging as such a feasible alternative. The concept lies in the specificity of bacteriophages to kill certain strains of bacteria and not cause infections in animals and humans. Treatment of animals with specific phages could, therefore, reduce or eliminate pathogens responsible for the majority of human food-borne illnesses, namely salmonella and campylobacter.

The EU 'Veterinary phage therapies as alternatives to antibiotics in ' (Phagevet-P) project aimed to evaluate the potential use of phages as alternatives to antibiotics in poultry production.

As a first step, project partners isolated and characterised several phages active against salmonella and campylobacter from and poultry carcasses. These phages were tested against a pool of food and clinical isolates of enteritidis, campylobacter coli and campylobacter jejuni.

In vivo administration of phage by oral gavage or incorporation in food and subsequent analysis showed a two- to three-fold reduction in salmonella and campylobacter numbers. To minimise the risk of developing phage resistance and achieve maximal pathogen elimination, it was proposed to administer phage one day before slaughter.

The Phagevet-P approach was successfully validated as a feasible alternative to antibiotics, supporting the general use of bacteriophages to control pathogenic or undesirable bacteria.

Explore further: Earliest stages of ear development involve a localized signaling cascade

add to favorites email to friend print save as pdf

Related Stories

New viruses to treat bacterial diseases

Sep 03, 2007

Viruses found in the River Cam in Cambridge, famous as a haunt of students in their punts on long, lazy summer days, could become the next generation of antibiotics, according to scientists speaking today at the Society for ...

Vaccinating chickens could prevent food-borne illness

Mar 26, 2012

A vaccine could be developed to prevent Campylobacter being carried in chickens. This approach could drastically cut the number of cases of food poisoning, saving the UK economy millions each year, says an American scient ...

Salmonella in garden birds responsive to antibiotics

Jun 02, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

A zap of cold plasma reduces harmful bacteria on raw chicken

Feb 02, 2012

A new study by food safety researchers at Drexel University demonstrates that plasma can be an effective method for killing pathogens on uncooked poultry. The proof-of-concept study was published in the January issue of the ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.