Nanotechnologists create minuscule soccer balls

Sep 28, 2012

Nanotechnologists at the University of Twente's MESA+ research institute have developed a method whereby minuscule polystyrene spheres, automatically and under controlled conditions, form an almost perfect ball that looks suspiciously like a football, but about a thousand times smaller. The spheres organize themselves in such a way that they approach the densest arrangement possible, known as 'closest packing of spheres'. The method provides nanotechnologists with a new way of creating minuscule 3D structures.

The research was published this week in the leading scientific journal (PNAS).

The method developed by the University of Twente scientists involves placing a drop of water containing thousands of polystyrene spheres one micrometre in size (a thousand times smaller than a millimetre) on a superhydrophobic surface. As the drop is allowed to evaporate very slowly under controlled conditions the distances between the spheres become smaller and smaller and surprisingly they form a highly organized 3D structure.

The spheres were found to organize themselves of their own accord in such a way that the ball they form approaches the most compact arrangement possible ('closest packing of spheres'), with 74% of the space filled by the spheres. Like a football, the structures that form are almost perfectly spherical, consisting of a large number of planes. The researchers have therefore dubbed their material 'microscopic soccer balls'. The minuscule footballs are a hundred to a thousand micrometres in size, containing from ten thousand to as much as a billion of the tiny polystyrene .

The research at Twente has produced a new method of creating complex of this kind by means of self-assembly. As the scientists are able to precisely control the number of and the evaporation rate, they can determine the structure of the end-product with great precision. The method thus provides nanotechnologists with a new way of creating minuscule structures efficiently. They could eventually be used e.g. for medical purposes and in the food industry.

Explore further: Thinnest feasible nano-membrane produced

More information: Building microscopic soccer balls with evaporating colloidal fakir drops, PNAS, Published online before print September 24, 2012, doi: 10.1073/pnas.1209553109

Abstract
Evaporation-driven particle self-assembly can be used to generate three-dimensional microstructures. We present a unique method to create colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion droplets on a special type of superhydrophobic microstructured surface, on which the droplet remains in Cassie–Baxter state during the entire evaporative process. The remainders of the droplet consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the dynamics of the droplet evaporation, particle size, and number of particles in the system.

Related Stories

Miniature Doughnuts

Mar 15, 2005

A matter of capillary action: colloid crystals as molds for nanorings It isn't only prospective bridal couples that are interested in rings; engineers and scientists are also fascinated by the apparently near-magical properti ...

Hollow spheres made of metal

Oct 13, 2009

Producing metallic hollow spheres is complicated: It has not yet been possible to make the small sizes required for new high-tech applications. Now for the first time researchers have manufactured ground hollow ...

'Bed of nails' material for clean surfaces

Sep 17, 2012

(Phys.org)—Scientists at the University of Twente's MESA+ Institute for Nanotechnology have developed a new material that is not only extremely water-repellent but also extremely oil-repellent. It contains ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Husky
not rated yet Sep 29, 2012
the truely mindboggling thing is that this tiny football itself is arranged from a billion even tinier polysterene spheres..

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.