Researchers find that molecules sense curvature at the nanoscale

September 20, 2012 by Holly Bunje

(Phys.org)—UCLA researchers, working in collaboration with colleagues at the University of Washington and Pennsylvania State University have used surface photochemical reactions to probe the critical role of substrate morphology on self-assembly and ligand environment, determining that molecules on curved surfaces have a greater range of orientations and, as a result, react more slowly than do molecules on flat surfaces.

Although researchers have developed extensive strategies for placing and patterning individual molecules, pairs of molecules, lines of molecules and clusters of molecules on flat surfaces, they had not previously been able to confirm whether these same strategies apply to curved and faceted surfaces, such as nanoparticles, nanorods and . Molecules in solution are free to rotate and thus react differently than do molecules on surfaces, which are held upright and next to each other.

In the present research, the authors investigated how loosely pairs of molecules were held on curved versus flat surfaces by using a novel method of placing proximate pairs of identical on the various surfaces. They found that molecules on curved surfaces do not have enough freedom to tumble around like molecules in solution; however, they have a greater range of orientations and thus react more slowly than do molecules on flat surfaces, presumably because they are not held as tightly.

"This is important because in order to have multifunctional nanoparticles, we have to put different molecules on the nanoparticles, and we need to know how and how many of each molecule attach, and how they are arranged," said study author Paul S. Weiss of UCLA.

The study appears in the journal .

Explore further: Researchers to develop active nanoscale surfaces for biological separations

More information: DOI: 10.1021/nl302750d

Related Stories

Polymer scientists make imprint on nanolithography

December 13, 2010

(PhysOrg.com) -- Nanolithography, or surface patterning on a nanoscale, is critical for modern technology, but has been developed largely for patterning flat surfaces until recently. A team of University of Akron scientists ...

Nanotube 'glow sticks' transform surface science tool kit

January 11, 2012

(PhysOrg.com) -- Many physical and chemical processes necessary for biology and chemistry occur at the interface of water and solid surfaces. Researchers at Los Alamos National Laboratory publishing in Nature Nanotechnology ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.