Researchers discover molecular basis for body-color change in red dragonflies

Sep 11, 2012
Researchers discover molecular basis for body-color change in red dragonflies
Difference in body color of the summer darter. The male contains more reduced ommochrome pigments and exhibits higher antioxidant activity than the female.

Japanese researchers have discovered that the body color of the red dragonflies changes from yellow to red through redox reaction of pigments called ommochromes.

Both male and female red dragonflies are yellow in the immature adult stage, but males turn into red upon maturation. This is due to the change of oxidized ommochrome pigments into reduced forms. Redox-based dramatic body color change has not been reported before. Cells that change into red are in the antioxidant state due to the presence of the reduced form pigments. Further investigation of the of this body color change should help us to understand how the antioxidant state is maintained in organisms.

This study was published online in on July 10, 2012 (JST).

Researchers discover molecular basis for body-color change in red dragonflies
Body colors of immature and mature scarlet skimmers (Crocothemis servilia) of both sexes.

Beautiful red dragonflies are mature males, while females and newly emerged immature males are dull yellow in color. The different body colors of males and females play important roles in partner recognition before mating and . Several mechanisms have been reported for body color changes in insects and other animals, such as synthesis and degradation of pigments, changes in localization of pigments, and accumulation of pigments from food. However, the mechanisms underlying the body color change in red dragonflies have been unknown.

AIST has been investigating the sophisticated biological functions of insects for adaption to various environments, one of which is the mechanism of body color underlying their important ecological feature. Many dragonfly species drastically change their body color upon adult maturation, but molecular mechanisms underlying the process are unknown. In this study, the mechanisms underlying the body color change in red dragonflies are investigated.

Pigments present in three species of red dragonfly, namely the autumn darter (Sympetrum frequens), the summer darter (Sympetrum darwinianum),and the scarlet skimmer (Crocothemis servilia), were extracted and characterized. Two different ommochrome pigments (xanthommatin and decarboxylated xanthommatin) were commonly identified in all these species.

Previous studies have reported that the color of ommochrome pigments changes reversibly by redox reactions in vitro. In this study, when an oxidant or reductant was added, the color of the pigments extracted from the red dragonflies changed reversibly, from red to yellow in the presence of the oxidant and from yellow to red in the presence of the reductant. In addition, when ascorbic acid (vitamin C), a reductant, was injected into live dragonflies, the yellowish body color of both immature males and mature females changed into red as observed in mature males. Redox conditions of the pigments extracted from the dragonflies were electrochemically measured and the ratios of the oxidized and reduced pigments were quantified. Only the mature males exhibited very high proportions of the reduced ommochrome pigments. These results indicate that sex-specific color change in mature red dragonflies is primarily regulated by redox states of the ommochrome pigments.

Researchers discover molecular basis for body-color change in red dragonflies
(Top) Yellow-red body color change in the dragonflies by reductant injection at the position indicated by the arrows. (Bottom) Reduced form ratios of the ommochrome pigments extracted from the abdomens of adult dragonflies (average of over 10 dragonflies, with standard deviations)

Accumulation of water-soluble antioxidants (reducing agents) like ascorbic acid is often observed in plants. Such antioxidants may be synthesized and/or accumulated in mature males of the red dragonflies and involved in reduction of the ommochrome pigments. By measuring antioxidant activities in water extracts from the epidermis of the dragonflies, stronger antioxidant activities were detected in mature males than mature females. Further analysis revealed that the reduced ommochrome pigments are the major components of the antioxidant present in these males.

Male-specific color change of dragonflies has been considered as an ecologically important trait for reproductive success. The results of this study suggest that the coloration may play another biological role: strong antioxidant ability in mature males may be relevant to their territorial behavior under the scorching sun to reduce oxidative stress from ultraviolet radiation.

A previously unknown mechanism in animals, namely a body color change of red dragonflies by redox reaction of the pigments, has been elucidated. Red mature males exhibited antioxidant state, and since this red color is maintained for a long time even in dried specimens, there may be some mechanism that maintains the pigments reduced. Further investigation may lead to a new understanding of antioxidation mechanism.

The researchers will perform comprehensive gene expression analyses using next-generation sequencing techniques to investigate the molecular mechanisms underlying the body color change in the red . Through such approaches, the mechanisms as to how the pigments are efficiently altered into the reduced form and how the antioxidant state of the is maintained are to be understood, which would lead to the development of useful natural antioxidants.

Explore further: Male monkey filmed caring for dying mate (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Feather color is more than skin deep

Apr 15, 2009

Where do birds get their red feathers from? According to Esther del Val, from the National History Museum in Barcelona, Spain, and her team, the red carotenoids that give the common crossbill (Loxia curvirostra) its red coloration ...

Color-changing bacterium inside the pea aphid

Jan 07, 2011

A bacterium that can live symbiotically inside the pea aphid, Acyrthosiphon pisum, is able to change the insect’s body color from red to green, a RIKEN-led team of molecular entomologists has found. Becaus ...

Red kiwi poised to make a healthy debut

Nov 09, 2005

First there was green, then yellow and now red-fleshed kiwifruit. A team of researchers in Italy and New Zealand has found that a newly developed variety of red-fleshed kiwifruit contain anthocyanins, bright red pigments ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...