Martian clay minerals might have a much hotter origin

Sep 12, 2012

(Phys.org)—Ancient Mars, like Earth today, was a diverse planet shaped by many different geologic processes. So when scientists, using rovers or orbiting spacecraft, detect a particular mineral there, they must often consider several possible ways it could have been made.

Several such hypotheses have been proposed for the formation of , which have been detected from orbit and are sometimes considered indicators that the surface has, in the past, been altered by liquid water. Now, publishing in the journal Nature Geoscience, a team of French and American scientists led by Alain Meunier of the Université de Poitiers and including Caltech's Bethany Ehlmann, has suggested a new, very different possibility.

Previously, planetary scientists considered two hypotheses—both offering the potential for once-habitable environments on Mars—that explain clay . One holds that over long enough periods, contact with liquid water can alter igneous rock, such as basalt, producing clays; the other proposes that waters flowing through the martian subsurface can produce clays through a hydrothermal process.

In the new paper, the authors suggest that the clay minerals instead might have precipitated directly from scalding hot magmas.

"This new hypothesis is less exciting for astrobiology because life could not survive in those types of conditions," says Bethany Ehlmann, an assistant professor of at Caltech and a research scientist at the Jet Propulsion Laboratory. "But all three hypotheses need to be on the table as we consider a given clay-bearing deposit. Each hypothesis has a different implication for the history and of ."

Ehlmann says that scientists hope to use the Curiosity rover and its suite of instruments to study the clays found in sediments at Gale Crater—the that the robotic geologist was sent to explore. However, she notes, clays are typically found in even older igneous bedrock on Mars. Future rover missions would need to study clay formation in that ancient crust to rigorously test the various clay formation hypotheses. "There's more exploration that needs to be done before we understand all the mysteries of Mars," she says.

Explore further: Comet dust—planet Mercury's 'invisible paint'

Related Stories

New analysis of clay deposits in ancient Martian Lakes

Mar 16, 2012

Mars was once a much wetter world than it is now, with hot springs, rivers, lakes and perhaps even oceans. Just how wet exactly, and for how long, is still a subject of considerable debate. One vital clue ...

Turning glass into clay

Jul 06, 2012

The magic mineral and microbial processes that transform volcanic glass into clay have been identified, adding important knowledge to how clay is formed.

Rover arrives at new site on martian surface

Aug 10, 2011

(PhysOrg.com) -- After a journey of almost three years, NASA's Mars Exploration Rover Opportunity has reached the Red Planet's Endeavour crater to study rocks never seen before.

Recommended for you

Cassini: Return to Rhea

5 hours ago

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

Comet dust—planet Mercury's 'invisible paint'

12 hours ago

A team of scientists has a new explanation for the planet Mercury's dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from p ...

It's 'full spin ahead' for NASA soil moisture mapper

15 hours ago

The 20-foot (6-meter) "golden lasso" reflector antenna atop NASA's new Soil Moisture Active Passive (SMAP) observatory is now ready to wrangle up high-resolution global soil moisture data, following the successful ...

What drives the solar cycle?

16 hours ago

You can be thankful that we bask in the glow of a relatively placid star. Currently about halfway along its 10 billion year career on the Main Sequence, our sun fuses hydrogen into helium in a battle against ...

MESSENGER completes 4,000th orbit of Mercury

16 hours ago

On March 25, the MESSENGER spacecraft completed its 4,000th orbit of Mercury, and the lowest point in its orbit continues to move closer to the planet than ever before. The orbital phase of the MESSENGER ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.