Computer, read my lips: Emotion detector developed using a genetic algorithm

Sep 10, 2012

A computer is being taught to interpret human emotions based on lip pattern, according to research published in the International Journal of Artificial Intelligence and Soft Computing. The system could improve the way we interact with computers and perhaps allow disabled people to use computer-based communications devices, such as voice synthesizers, more effectively and more efficiently.

Karthigayan Muthukaruppanof Manipal International University in Selangor, Malaysia, and co-workers have developed a system using a that gets better and better with each iteration to match irregular ellipse fitting equations to the shape of the human mouth displaying different emotions. They have used photos of individuals from South-East Asia and Japan to train a computer to recognize the six commonly accepted human emotions - happiness, sadness, fear, angry, disgust, surprise - and a neutral expression. The upper and lower lip is each analyzed as two separate ellipses by the algorithm.

"In recent years, there has been a growing interest in improving all aspects of interaction between humans and computers especially in the area of human by observing facial expression," the team explains. Earlier researchers have developed an understanding that allows emotion to be recreated by manipulating a representation of the human face on a computer screen. Such research is currently informing the development of more realistic animated actors and even the behavior of robots. However, the inverse process in which a computer recognizes the emotion behind a real human face is still a difficult problem to tackle.

It is well known that many deeper emotions are betrayed by more than movements of the mouth. A genuine smile for instance involves flexing of muscles around the eyes and eyebrow movements are almost universally essential to the subconscious interpretation of a person's feelings. However, the lips remain a crucial part of the outward expression of emotion. The team's algorithm can successfully classify the seven emotions and a neutral expression described.

The researchers suggest that initial applications of such an emotion detector might be helping disabled patients lacking speech to interact more effectively with computer-based communication devices, for instance.

Explore further: Computerized emotion detector

More information: "Lip pattern in the interpretation of human emotions" in Int. J. Artificial Intelligence and Soft Computing, 2012, 3, 95-107

add to favorites email to friend print save as pdf

Related Stories

Is my robot happy to see me?

Oct 19, 2009

(PhysOrg.com) -- People are social creatures. Robots... not so much. When we think of robots, we think of cold, metallic computers without emotion. If science fiction has taught us anything, though, it's that ...

Understanding emotions without language

Nov 02, 2011

According to a new study by researchers from the MPI for Psycholinguistics and the MPI for Evolutionary Anthropology, you don't need to have words for emotions to understand them. The results of the study ...

Recommended for you

Computerized emotion detector

Sep 16, 2014

Face recognition software measures various parameters in a mug shot, such as the distance between the person's eyes, the height from lip to top of their nose and various other metrics and then compares it with photos of people ...

Cutting the cloud computing carbon cost

Sep 12, 2014

Cloud computing involves displacing data storage and processing from the user's computer on to remote servers. It can provide users with more storage space and computing power that they can then access from anywhere in the ...

Teaching computers the nuances of human conversation

Sep 12, 2014

Computer scientists have successfully developed programs to recognize spoken language, as in automated phone systems that respond to voice prompts and voice-activated assistants like Apple's Siri.

Mapping the connections between diverse sets of data

Sep 12, 2014

What is a map? Most often, it's a visual tool used to demonstrate the relationship between multiple places in geographic space. They're useful because you can look at one and very quickly pick up on the general ...

User comments : 0