Elusive atmospheric compound revealed in the laboratory

Sep 26, 2012
The state-of-the-art Environmental Chamber is used to study the aerosol lifecycle. The chamber is located in the Atmospheric Measurements Laboratory at PNNL. The purple glow is generated by ultraviolet lights that simulate the actions of sunlight. Scientists re-create atmospheric reactions in the chamber by injecting gas-phase aerosols and modeling their reactions.

(Phys.org)—Like a talented escape artist, this atmospheric performer has managed to hide its modus operandi—until now. Scientists at Pacific Northwest National Laboratory and the University of California-San Diego have exposed the antics of an organic or carbon-containing compound and how it reacts with water in the atmosphere to complete its escape act. Documenting the particle's MO gives scientists a way to track this atmospheric player and has implications for understanding its warming and cooling effects on the climate. Their research was recently published in Aerosol Science and Technology.

There are carbon-containing compounds in the atmosphere, from both human-caused emission sources and from plant-based emissions. They are suspended in the atmosphere, along with a veritable aerosol soup of water, gases, dust, and , and are continuously reacting to form other compounds. Because many of these ingredients influence the way sunlight scatters or is absorbed in the atmosphere, scientists are working to single out these constituents to find the role each plays in the warming and cooling of the climate.

Organonitrates, compounds formed from in the presence of (NOx), have long been predicted to be abundantly present in the atmosphere. But direct observations to date had not confirmed that prediction. Two causes are suspect in missing their presence: the chief instrument used for atmospheric sampling is not sensitive to their presence and researchers suspected that these compounds react so quickly with water to form other compounds that they are not detected.

The research team used the Environmental Chamber located at PNNL in the Atmospheric Measurements Laboratory to observe the reaction of these molecules. They injected gas-phase organic into the chamber, then started photooxidation reactions by turning on the chamber's UV lights. Reacting in the presence of light and NOx, the organic gases oxidize forming a myriad of products, including organic nitrates, some of which condense to form particles. The team then measured the presence of organonitrates in the particles under different relative humidity conditions and measured how fast they react with water.

The study concluded that these constituents are efficiently generated in the and condense to the particle phase in significant quantities. In the particle phase, they are initially light-absorbing, but as they react with water that ability quickly wanes. The laboratory observations in the chamber enabled the team to gain insights on how the particles initially absorb light, thus having a warming effect on the climate, then have a cooling effect as they age. The measurements also help researchers interpret field observations.

This research has fit another piece into the atmospheric puzzle. The team's progress opens the door for further collaboration by examining atmospheric organic particles using laboratory recreation of atmospheric processes.

Explore further: Warm US West, cold East: A 4,000-year pattern

More information: Liu S, JE Shilling, C Song, N Hiranuma, RA Zaveri, and LM Russell. 2012. "Hydrolysis of Organonitrate Functional Groups in Aerosol Particles." Aerosol Science and Technology 46(12): 1359-1369. DOI: 10.1080/02786826.2012.716175

Related Stories

Refining atmospheric climate models

Feb 01, 2011

(PhysOrg.com) -- A long, frustrating search for the source of "extra" aerosols seen in field experiments but not in models might have come to an end when scientists at Pacific Northwest National Laboratory ...

Sunlight changes aerosols in clouds

Oct 12, 2011

(PhysOrg.com) -- Today's climate models regard organic aerosols as static carbon-based molecules, but scientists at Pacific Northwest National Laboratory and the University of California, Irvine showed that ...

Tiny airborne pollutants lead double life: study

Jul 30, 2012

University of British Columbia and Harvard researchers have provided visual evidence that atmospheric particles -- which are ubiquitous in the atmosphere, especially above densely populated areas -- separate ...

Recommended for you

Warm US West, cold East: A 4,000-year pattern

2 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

4 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Agriculture's growing effects on rain

Apr 15, 2014

(Phys.org) —Increased agricultural activity is a rain taker, not a rain maker, according to researchers at Pacific Northwest National Laboratory and their collaborators at the University of California Los ...

User comments : 0

More news stories

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.