Finding more efficient catalysts for sunlight-powered hydrogen production

Sep 12, 2012
Finding more efficient catalysts for sunlight-powered hydrogen production
Janus, the two-faced god of Roman mythology, has lent his name to two-sphere particles that can be used to boost hydrogen production. Credit: iStockphoto.com/marialba.italia

Hydrogen is crucial for the oil-refining industry and the production of essential chemicals such as the ammonia used in fertilizers. Since producing hydrogen is costly, scientists have long searched for alternative, energy-efficient methods to separate hydrogen atoms from abundant sources such as water.

Nanometer-scale structures consisting of cheap metal and oxide spheres were recently demonstrated as an excellent catalyst for a hydrogen-production reaction powered only by sunlight. The study was completed by Ming-Yong Han and his colleagues of the A*STAR Institute of and Engineering, Singapore, working in collaboration with a team of researchers from Singapore and France. 

Han and his team mixed 50-nanometer diameter spheres of gold into a precursor such that a sphere of titanium dioxide formed on the side of each gold nanoparticle. Structures with this two-sphere arrangement are known as Janus particles, named after the two-headed god from Roman mythology. While the Janus particles were suspended in a mixture of water and isopropyl alcohol, Han and co-workers shone visible light on them and measured hydrogen production, which proceeded at a rate as fast as 2 milliliters per minute.

The researchers then used to show that this production rate was caused by so-called plasmonics effects: that is, the electrons on the surface of the gold nanoparticle at the junction with the titanium dioxide coupled to the incoming light and formed light–matter hybrid particles called plasmon polaritons. The energy absorbed by these particles then passed into the surrounding liquid, and this drove the hydrogen-releasing chemical reaction.

"Our work provides insight into mechanisms that will be useful for the future development of high-performance ," says Han. Indeed, Han and his co-workers were able to improve the efficiency of the hydrogen production even further: they increased the area of the metal–oxide interface by using larger gold nanoparticles.

The Janus particles were 100 times more efficient as a catalyst for than bare gold nanoparticles. Moreover, they were over one-and-a-half times better than another common type of plasmonic nanoparticle, core–shell particles, in which the oxide material forms a coating around the metal nanoparticle.

"We next hope to develop a better understanding of the processes that occur at the metal–titanium-dioxide interface using a combination of experimental observations and theoretical simulations," says Han. "This will get us closer to our ultimate goal of using solar illumination as an abundant source of renewable energy."

Explore further: Thinnest feasible nano-membrane produced

More information: Seh, Z. W., Liu, S., Low, M., Zhang, S.-Y., Liu, Z., et al. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials 24, 2310–2314 (2012). onlinelibrary.wiley.com/doi/10.1002/adma.201104241/abstract

add to favorites email to friend print save as pdf

Related Stories

Hydrogen storage in nanoparticles works

Mar 31, 2008

Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles ...

Recommended for you

Making graphene in your kitchen

11 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.