Towards computing with water droplets—superhydrophobic droplet logic

September 7, 2012

Researchers at Aalto University, Finland, have developed a new concept for computing, using water droplets as bits of digital information. This was enabled by the discovery that upon collision with each other on a highly water-repellent surface, two water droplets rebound like billiard balls.

In the work, published in the journal Advanced Materials, the researchers experimentally determined the conditions for rebounding of moving on superhydrophobic surfaces. In the study, a coated with silver and chemically modified with a fluorinated compound was used. This method enables the surface to be so water-repellent that water droplets roll off when the surface is tilted slightly. Superhydrophobic tracks, developed during a previous study, were employed for guiding droplets along designed paths.

Using the tracks, the researchers demonstrated that water droplets could be turned into technology, "superhydrophobic droplet logic". For example, a was built where water droplets act as bits of digital information. Furthermore, devices for elementary Boolean logic operations were demonstrated. These simple devices are building blocks for computing. (Video 1)

This video is not supported by your browser at this time.

Furthermore, when the water droplets are loaded with reactive chemical cargo, the onset of a chemical reaction could be controlled by droplet collisions. Combination of the collision-controlled chemical reactions with droplet potentially enables programmable where single droplets serve simultaneously as miniature reactors and bits for computing. (Video 2)

This video is not supported by your browser at this time.

"It is fascinating to observe a new for such everyday objects – water droplets," tells Robin Ras, an Academy Research Fellow in the Molecular Materials research group.

"I was surprised that such rebounding collisions between two droplets were never reported before, as it indeed is an easily accessible phenomenon: I conducted some of the early experiments on water-repellent plant leaves from my mother's garden," explains a member of the research group, Henrikki Mertaniemi, who discovered the rebounding droplet collisions two years ago during a summer student project in the research group of Ras and Academy Professor Olli Ikkala.

The researchers foresee that the present results enable technology based on superhydrophobic droplet logic. Possible applications include autonomous simple logic devices not requiring electricity, and programmable biochemical analysis devices.

Explore further: Water running uphill a cooling idea

More information: Mertaniemi H., Forchheimer R., Ikkala O., and Ras R.H.A., Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic, Advanced Materials (2012).

Related Stories

Droplets that Roll Uphill

September 24, 2007

A recent experiment conducted by physicists at University of Bristol in the United Kingdom has shown that liquid drops can defy gravity. Droplets of liquid on an inclined plate that is shaken up and down can travel uphill ...

Driving water droplets uphill

April 2, 2008

Lab-on-a-chip technology could soon simplify a host of applications, thanks to a new way to move droplets up vertical surfaces on flexible chips.

Bouncing water droplets reveal small-scale beauty (w/ Video)

October 14, 2010

In the video below, scientists have captured the simple movements of water droplets on a superhydrophobic carbon nanotube surface. The video shows the water droplets as they bounce, slide, and roll across different structures ...

First 'microsubmarines' designed to help clean up oil spills

May 2, 2012

Scientists are reporting development and successful testing of the first self-propelled "microsubmarines" designed to pick up droplets of oil from contaminated waters and transport them to collection facilities. The report ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Sep 07, 2012
Before some time I proposed the capillary model of semiconductor junction based on surface tension phenomena inside of layers of beads with different hydrophobicity. Apparently this model can be reduced into single droplet inside of hydrophobic channel and to generate semiconductor fluid logics in this way.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.