Research: Hopping DNA supercoils

Sep 14, 2012
Artistic impression of the dynamics of DNA supercoils. A person manipulates a long DNA molecule. Loops in the DNA molecule are created by winding up the DNA. For the first time ever, the research by Van Loenhout, Grunt and Dekker revealed how these DNA loops dynamically move along the DNA strand.

If you take hold of a DNA molecule and twist it, this creates 'supercoils', which are a bit like those annoying loops and twists you get in earphone cables. Research carried out by TU Delft, The Netherlands, has found that in the DNA molecule these coils can make their way surprisingly quickly along the length of the DNA. This newly discovered 'hopping' mechanism - which takes places in a matter of milliseconds - could have important biological implications, because cells use the coils to bring specific pieces of DNA into contact with one another. The researchers from Cees Dekker's group at the Kavli Institute of Nanoscience in Delft will be publishing their results in Science this week.

Supercoiling

A DNA molecule in a cell is not simply a loose wire; it is completely wound up in a tangle of loops ('DNA supercoils'). These supercoils in a DNA molecule (see the illustration on the right) are similar to those annoying loops and twists you often get in earphone .

In living , the DNA supercoils form and unravel and move along the DNA molecule. They are vital to the regulation of DNA activity, in determining which are switched on or off for example. One of the ways in which cells use the supercoils is to bring pieces of DNA into contact with one another.

Dynamic

Static images of the DNA supercoils have been studied in detail in the past, but their dynamics remained unknown up till now. PhD student Marijn van Loenhout from the Kavli Institute of at Delft developed a new technique that enabled him to observe how the coils travel along a DNA molecule for the first time. The research was led by Professor Cees Dekker, head of the Bionanoscience Department.

The TU Delft team used magnetic tweezers to stretch out a small section of a DNA molecule and were then able to observe the movement of the DNA coils using (see movies at the website). They succeeded in showing these movements in real time, at the level of the individual

This video is not supported by your browser at this time.

Hopping coils

Van Loenhout: "We have discovered that the coils can move slowly along the DNA via diffusion. But what we also saw - and this was totally unexpected - that they can 'hop' along relatively long distances (micrometres). In such a movement a loop disappears in one spot, while simultaneously another loop appears in another spot, much further away. This information enables us to test theories about the mechanics of DNA, testing how you tie a knot in DNA, as it were."

TU Delft's Professor Cees Dekker: "The newly discovered 'hopping' mechanism could have important consequences; after all, the mechanism makes it possible to rearrange the genome over a long distance and within a matter of milliseconds. A surprising observation."

Enthusiastic

The research carried out by TU Delft will be published in Science this week. Cees Dekker: "We have presented this work before at conferences; recently at Stanford University's Bio-Engineering Department, for example. The response was overwhelmingly positive. It is after all the first study into the dynamics of DNA supercoiling and may have important implications for research on the many cell processes that are based on spatial rearrangement of the genome."

Dr William Greenleaf of Stanford University's School of Medicine: "These experiments are reminiscent of some of the foundational experiments of single molecule biophysics, such as that of Steven Chu and others, who used fluorescence to make DNA visible. The new method developed by the Delft team makes it possible to observe supercoils in DNA , which provides a unique insight into the properties of twisted DNA. The work presents exciting and potentially fundamental discoveries regarding the physical nature of genetic material."

Explore further: Ocean microbes display remarkable genetic diversity

More information: The TU Delft research on DNA supercoiling will be published on 13 September 2012 in the online express edition of Science.: Dynamics of DNA Supercoils. M.T.J. van Loenhout, M.V. de Grunt and C. Dekker.

add to favorites email to friend print save as pdf

Related Stories

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

Nanotweezers Unlock Anticancer Drug Secrets

Aug 22, 2007

The annoying bulges of an overwound telephone cord that shorten its reach and limit a caller’s motion help explain why drugs called camptothecins are so effective in killing cancer cells, according to investigators led ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

Recommended for you

Ocean microbes display remarkable genetic diversity

15 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

17 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic legacy of rare dwarf trees is widespread

Researchers from Queen Mary University of London have found genetic evidence that one of Britain's native tree species, the dwarf birch found in the Scottish Highlands, was once common in England.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.