Research: Hopping DNA supercoils

Sep 14, 2012
Artistic impression of the dynamics of DNA supercoils. A person manipulates a long DNA molecule. Loops in the DNA molecule are created by winding up the DNA. For the first time ever, the research by Van Loenhout, Grunt and Dekker revealed how these DNA loops dynamically move along the DNA strand.

If you take hold of a DNA molecule and twist it, this creates 'supercoils', which are a bit like those annoying loops and twists you get in earphone cables. Research carried out by TU Delft, The Netherlands, has found that in the DNA molecule these coils can make their way surprisingly quickly along the length of the DNA. This newly discovered 'hopping' mechanism - which takes places in a matter of milliseconds - could have important biological implications, because cells use the coils to bring specific pieces of DNA into contact with one another. The researchers from Cees Dekker's group at the Kavli Institute of Nanoscience in Delft will be publishing their results in Science this week.


A DNA molecule in a cell is not simply a loose wire; it is completely wound up in a tangle of loops ('DNA supercoils'). These supercoils in a DNA molecule (see the illustration on the right) are similar to those annoying loops and twists you often get in earphone .

In living , the DNA supercoils form and unravel and move along the DNA molecule. They are vital to the regulation of DNA activity, in determining which are switched on or off for example. One of the ways in which cells use the supercoils is to bring pieces of DNA into contact with one another.


Static images of the DNA supercoils have been studied in detail in the past, but their dynamics remained unknown up till now. PhD student Marijn van Loenhout from the Kavli Institute of at Delft developed a new technique that enabled him to observe how the coils travel along a DNA molecule for the first time. The research was led by Professor Cees Dekker, head of the Bionanoscience Department.

The TU Delft team used magnetic tweezers to stretch out a small section of a DNA molecule and were then able to observe the movement of the DNA coils using (see movies at the website). They succeeded in showing these movements in real time, at the level of the individual

This video is not supported by your browser at this time.

Hopping coils

Van Loenhout: "We have discovered that the coils can move slowly along the DNA via diffusion. But what we also saw - and this was totally unexpected - that they can 'hop' along relatively long distances (micrometres). In such a movement a loop disappears in one spot, while simultaneously another loop appears in another spot, much further away. This information enables us to test theories about the mechanics of DNA, testing how you tie a knot in DNA, as it were."

TU Delft's Professor Cees Dekker: "The newly discovered 'hopping' mechanism could have important consequences; after all, the mechanism makes it possible to rearrange the genome over a long distance and within a matter of milliseconds. A surprising observation."


The research carried out by TU Delft will be published in Science this week. Cees Dekker: "We have presented this work before at conferences; recently at Stanford University's Bio-Engineering Department, for example. The response was overwhelmingly positive. It is after all the first study into the dynamics of DNA supercoiling and may have important implications for research on the many cell processes that are based on spatial rearrangement of the genome."

Dr William Greenleaf of Stanford University's School of Medicine: "These experiments are reminiscent of some of the foundational experiments of single molecule biophysics, such as that of Steven Chu and others, who used fluorescence to make DNA visible. The new method developed by the Delft team makes it possible to observe supercoils in DNA , which provides a unique insight into the properties of twisted DNA. The work presents exciting and potentially fundamental discoveries regarding the physical nature of genetic material."

Explore further: 500 million year reset for the immune system

More information: The TU Delft research on DNA supercoiling will be published on 13 September 2012 in the online express edition of Science.: Dynamics of DNA Supercoils. M.T.J. van Loenhout, M.V. de Grunt and C. Dekker.

add to favorites email to friend print save as pdf

Related Stories

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

Nanotweezers Unlock Anticancer Drug Secrets

Aug 22, 2007

The annoying bulges of an overwound telephone cord that shorten its reach and limit a caller’s motion help explain why drugs called camptothecins are so effective in killing cancer cells, according to investigators led ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

Recommended for you

How steroid hormones enable plants to grow

15 hours ago

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

16 hours ago

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

16 hours ago

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

New discovery: Microbes create dripstones

Aug 18, 2014

According to new research humble, microscopic organisms can create dripstones in caves. This illustrates how biological life can influence the formation of Earth's geology - and the same may be happening ...

User comments : 0