Date palm juice: A potential new 'green' anti-corrosion agent for aerospace industry

Sep 26, 2012

The search for a "greener" way to prevent corrosion on the kind of aluminum used in jetliners, cars and other products has led scientists to an unlikely source, according to a report in ACS' journal Industrial & Engineering Chemistry Research. It's the juice of the date palm—those tall, majestic trees that, until now, were noted mainly as sources of food and traditional medicines.

Husnu Gerengi points out that strong, lightweight alloys are used to make planes, cars and industrial equipment. Aluminum corrodes when exposed to air, but unlike rusting steel, the corrosion of aluminum's surface layer forms a protective film that prevents degradation of the underlying metal. However, that film breaks down in some harsh environments, like seawater, leaving the metal vulnerable. Engineers have developed coatings to protect aluminum in these applications, but many of these use potentially toxic chemicals. Previous research suggested that extracts of date palm leaves had an anti-corrosion effect. Gerengi decided to check date palm .

He found that date palm juice inhibited of an aluminum alloy called AA7075, used in aerospace and other applications, in a salt solution. Gerengi noted that while an extract from leaves is a known anticorrosive, this was the first test of the fruit's juice. The juice, which he reported adsorbed into the aluminum's surface, contains a number of sugars. Gerengi posited that these react with aluminum to form an anticorrosive film on the metal's surface.

Explore further: Scientists learn to control reactions with the shape of a rare-earth catalyst

More information: "Anti-Corrosive Properties of Date Palm (Phoenix dactylifera L.) Fruit Juice on 7075 Type Aluminium Alloy in 3.5% NaCl Solution" Ind. Eng. Chem. Res., Article ASAP. DOI: 10.1021/ie301771u

Abstract
The influence of date palm (Phoenix dactylifera L.) (PDL) fruit juice on 7075 type aluminum (AA7075) alloy in 3.5% NaCl solution was investigated by Tafel extrapolarization and electrochemical impedance spectroscopy. It was found that PDL fruit juice acted as a slightly cathodic inhibitor, and inhibition efficiencies increased with the increase of PDL fruit juice concentration. The adsorption of the inhibitor on the metal surface was found to obey the Temkin adsorption isotherm and has a physisorption mechanism.

add to favorites email to friend print save as pdf

Related Stories

URI researchers develop corrosion-resistant polymer

Aug 02, 2004

A new group of non-toxic, corrosion-resistant polymers developed by University of Rhode Island scientist Sze Yang will likely put a smile on the face of Erin Brockovich. The polymers are designed as a replacement for chro ...

New coating protects steel and superalloys

Mar 23, 2006

Researchers at Pacific Northwest National Laboratory have developed a new ceramic-based coating for steel and superalloys that prevents corrosion, oxidation, carburization and sulfidation that commonly occur ...

Graphene is thinnest known anti-corrosion coating

Feb 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears ...

New super strong alloy discovered

Sep 08, 2010

(PhysOrg.com) -- International team of researchers has discovered a new super-strength light alloy and had their key findings published in Nature Communications.

Recommended for you

Team pioneers strategy for creating new materials

6 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

12 hours ago

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0